

Copyright 1997 Onset Computer Corporation

Credits

TFX-11 User Guide Project Director: Tom Mignone
Writers: Tom Mignone, Lon Hocker, Jim Dodd
Editors: Tom Mignone, Jim Dodd, Mark McPike
Illustrations: Tom Mignone, Robert Kelley, Lon Hocker
Layout and Design: Tom Mignone
Cover Design and Graphics: Tom Mignone

Special thanks to: Tom Sullivan, Al Bellows, Tom Wilson, Pierre Tillier,
John Godley, and Skip Pelletier for their many helpful comments,
corrections, and suggestions.

D-2469-A 8/1/97

INTRODUCTION

Onset Computer Corporation

536 MacArthur Boulevard.

P.O. Box 3450

Pocasset, MA 02559-3450

Tel. (508) 563-9000

Fax. (508) 563-9477

tech_support@onsetcomp.com

www.onsetcomp.com

ONSET document D-2469-A

 8/1/97
TFX-11 UserÕs Guide i

Introducing your TFX

Your new Onset TFX-11 is a state-of-the-art datalogger/controller, the
most recent in OnsetÕs line of Tattletale datalogger/controller engines. The
TFX combines OnsetÕs years of experience in design and manufacture of
high quality, easy to use datalogger/controller engines with the latest in
compact, low power, high-performance, components and technology.

The Onset supplied development software features the TFTools
Integrated Development Environment (IDE), greatly simplifying program
development with OnsetÕs TFBASIC programming language. TFBASIC is
a tokenized version of BASIC, with language extensions added by Onset
to greatly simplify common datalogging and control functions.

 The TFX-11 hardware combines large, non-volatile data storage capacity
and microampere range low power modes with small size. The resulting
developerÕs package is well suited to rapid development of intelligent
instruments from a simple temperature logger to a complicated, long
term, remote logging and control device.

TFX-11 Features ¥ Dual Processors : Motorola 68HC11F1 and PIC16C62

¥ Small size 2.4 in. x 3.2 in. x 0.5 in.

¥ Ultra low power mode - less than100mA HYB mode (50mA typical)

¥ Wide input voltage range for power supply (5.5-18 VDC) with thermal
shutdown protection.

¥ 472k Non-volatile data and program storage

¥ 128k battery backed RAM for R/W dataÞle and program

¥ High speed parallel data interface off-loads 512k Serial FLASH
(SFLASH) in less than 30 seconds.

¥ Development communication and SFLASH program/data upload and
off-load via Standard PC parallel Port

¥ 1 RS-232 hardware UART serial port

¥ 11 channel 12-bit A/D converter

¥ 8 channel 8-bit A/D converter, each channel may be optionally
conÞgured as a digital input.

¥ 16 TTL Digital I/O pins (two eight bit ports)

¥ 8-bit bus interface with chip selects for expansion
ii TFX-11 UserÕs Guide

Introducing your TFX

¥ Programs in TFBASIC and Assembler inside full-featured DOS based
Programming IDE. (Contact Onset for stand-alone DOS tools)

TFBASIC
LANGUAGE
OVERVIEW

TFBASIC is a tokenized dialect of the familiar BASIC (Beginners All-
Purpose Symbolic Instruction Code) with language extensions. These
extensions, added by Onset, simplify datalogging and control tasks.
Although the fundamental structures of the languages are similar, there
are many important differences. The following discusses the language,
with particular emphasis on this dialects additions, omissions and
exceptions.

How to use this
manual

For those of you familiar with Onset's TTBASIC or TXBASIC, please refer
to the section ÒWhatÕs New and Different in TFBASICÓ at the end of
Chapter 6. If this is your Þrst Tattletale, be sure to read through Chapter 1
ÓGetting StartedÓ and complete the tutorials.
TFX-11 UserÕs Guide iii

SpeciÞcations

Electrical ¥ Input 5.5 -18VDC input at 0.5 W max
dissipation, 50 mA. max.

¥ Power Consumption (typical) Running 14 mA. , Sleep 4 mA.,
HYB < 100 mA.

Environmental ¥ Operating Temperature Range0 to 70 degrees C.
¥ Relative Humidity 0 to 95%, non-condensing

Performance ¥ Hardware UART Baud Rates 300, 600, 1200, 2400, 4800, 9600,
19200, 38400

¥ Max Sampling Rate 800 samples/sec from TFBASIC, 3200+
using assembly language

¥ A/D accuracy 12-bit +/- 1.5 LSB
¥ A/D accuracy 8-bit +/- 1.5 LSB

Dimensional ¥ Board Dimensions 3.2Ó L x 2.4Ó W x 0.5Ó H
¥ Weight 1 ounce
iv TFX-11 UserÕs Guide

Introducing your TFX

Host Computer Requirements

The TFX-11 was designed to be programmed and off-loaded using an
IBM compatible PC. The minimum system requirements are :

¥ 25 MHz 486SX or greater minimum running MSDOS 6.xx

¥ 640K RAM with 580K available for program

¥ Hard Drive with 1MB available for program and related Þle storage

¥ (1) 3.5" 1.4MB ßoppy drive

¥ (1) parallel port

¥ (1) available RS-232 serial port

¥ Microsoft or compatible Mouse

Parallel Port
Note:

The TFX-11 comes complete and ready to run using only a single serial
port on the Host PC. For access to all the features of the TFX-11 the host
computer also requires at least one standard parallel printer port
connection. The parallel interface on the TFX-11 was designed to be
compatible with all PC parallel ports including ECP and EPP, when
conÞgured to run in standard mode.
TFX-11 UserÕs Guide v

Registering your TFX-11

Thank you for choosing Onset. In order to be eligible for OnsetÕs free
technical support and a free subscription to our TattleTips informational
newsletter you must mail back your registration card. On it are some
questions about you and your opinions about our products. Please be
assured this information will be kept conÞdential. It is for our internal use
only and WILL NOT be sold or otherwise distributed, but will be used by
us to assist in developing future products, product improvements, all
designed to best meet your current and future needs.
vi TFX-11 UserÕs Guide

Introducing your TFX

Technical Support Policy, Warranty, and Disclaimers

Read This Before
You Contact

Onset for
technical

assistance!

Onset provides technical support through a variety of channels. The Þrst
and most important is this manual - we have made every effort to provide
you with all the information you need in an easy to read format - please
check through it thoroughly before calling us. If you cannot Þnd what you
need in the manuals please be sure you understand what types of end
user problems we do and do not support by reading the following
paragraphs.

Software/
Programming

problems

Onset provides support for its software only and does not provide
instruction in how to program. It is expected that the end user have some
familiarity with programming principles and language constructs. We
provide an introduction to data logging computing and code examples in
the text of this userÕs manual and on disk to help you make the transition
from software only to software dependent hardware control and data
logging.

Hardware/circuit
design problems

Onset provides support for its hardware only when it does not appear to
meet our published speciÞcations or otherwise perform as advertised.
Onset does not provide instruction in electronics and electronic
instrument design other than what is included in this manual and related
application notes. Also, as it is says in the disclaimer, Onset does not
guarantee its code to be free from errors. It is again assumed you have
some familiarity with electronic principles and practices or have access to
someone who does. We try to provide an introduction to data logging
fundamental concepts and techniques and simple demonstration code
examples in this userÕs manual, with the source code to most examples
reproduced on the disk .

Warranty Hardware will be repaired or replaced (at OnsetÕs discretion) if found to be
defective in materials or workmanship for a period of one (1) year.
Software will be replaced only if the disk supplied is found to be defective.
All the programs and other Þles are offered as-is. If you choose to use the
software Onset cannot be held liable for any damages or loss of data
incurred as a result of its use. While we hope you Þnd this software useful,
it is up to you to determine the applicability, Þtness, and correctness for
your application.

Returns All returns require that you Þrst request and obtain a Return
Materials Authorization (RMA) number from Onset ! The RMA helps
TFX-11 UserÕs Guide vii

us track your return in our computer and speeds processing. To obtain an
RMA, call Onset sales support. Have available the Model number, serial
number, invoice number, and a brief explanation of the problem. They will
assign you a number which should be plainly visible on the outside of the
package and referred to in any correspondence. Returns without prior
authorization may be delayed. NOTE : some returns may be subject to a
restocking fee.

Disclaimers Onset does not authorize or approve the use of this equipment in life
support or related safety equipment, and cannot be held responsible for
any injury or death as a result of it being used in any related application.

If you choose to use the supplied software you do so at your own risk.
Onset cannot be held liable for any damages incurred as a result of its
use. While we hope you Þnd this software useful, it is up to you, the user,
to determine the applicability, Þtness, and correctness for your application.
We encourage your feedback for corrections, ampliÞcations, interesting
applications and other comments. Application notes or suggestions
supplied to us are not eligible for compensation unless details have been
worked out in advance. We will incorporate them, when and where
appropriate, for the beneÞt of all users.
viii TFX-11 UserÕs Guide

Introducing your TFX

Contacting Onset

Preparing to
contact Onset

If you have searched our manuals, help Þles and other sources of
assistance and still have not found an answer, then you need to contact
Onset. Before you contact Onset please have the following information
available and be well prepared to describe your problems or difÞculties by
doing the following:

Please have
handy the
following

information:

¥ Host computer brand name and model

¥ Number of MB of installed RAM

¥ Processor type

¥ System Clock speed

¥ Operating system name and version number

¥ TFTools version number

¥ TFX board serial number

¥ PIC software version number

¥ Installed or attached devices (modems, network, printers etc.) and their
corresponding ports.

Please be sure to include this information in any correspondence. If you
phone, have this information readily available. If possible (and if
appropriate to the problem) please try to be seated at your computer
when you call.

Syschk
diagnostic
shareware

Syschk is a shareware program that does an excellent job of cataloging
your PCÕs internal hardware conÞguration as well as statistics on its
performance. It will uncover and list out all the PC speciÞc information
requested above, as well as much more. Especially helpful is its
identiÞcation of COM ports and the devices attached to them. Highly
recommended, it is available for download at www.syschk.com

How to contact
Onset

You can contact us by phone, fax, email, U.S. mail, and the internet. See
the inside front cover of this manual for the current numbers. Our internet
World Wide Web site and FTP site contain the latest software and
example programs for the TFX.
TFX-11 UserÕs Guide ix

x TFX-11 UserÕs Guide

TABLE OF CONTENTS

INTRODUCTION i
Introducing your TFX ii
Host Computer Requirements v
Registering your TFX-11 vi
Technical Support Policy, Warranty, and Disclaimers vii
Contacting Onset ix

CHAPTER 1 1

Getting Started
Getting Started 2
Quick Start Tutorial 3
A Short TFTools Tutorial 4
Build a Datalogger, One Step at a Time 10

CHAPTER 2 15

The TFTools IDE
Understanding the TFTools Integrated Development Environment 16
TFTools Serial Communications 18
Navigating the TFTools Main Windows and Controls 19
Navigating the IDE without a Mouse 24

CHAPTER 3 27

TFTools Pulldown Menu Command Reference
FILE 28

EDIT 32

SEARCH 34

TATTLETALE 36

COMMPORT 40
TFX-11 UserÕs Guide xi

WINDOWS 42

HELP 43

CHAPTER 4 45

TFBASIC Language Reference
Legend 46
PredeÞned Read-only variables in TFBASIC 47
TFBASIC Quick Reference (grouped by function) 48
TFBASIC Quick Reference (alphabetical) 51
TFBASIC Language Reference for the TFX-11 54

ABS.. absolute value 55

AINT.. round float down to integer 56

ASFLT interpret argument as float 57

ASM... assemble to memory 58

ATN ... arctangent 61

BAUDSET............................... Set the baud rate of the main UART 62

BAUDGET Get the baud rate of the main UART 63

CALL....................................... Call an assembly language subroutine 64

CBREAK go to label on CTRL-C 65

CHAN...................................... get result of A-D conversion 66

COS.. cosine 67

COUNT.................................... count positive edges at I/O line 0 68

DIM.. dimension array 70

EXP.. raise e to a power 71

FIX... convert a float to an integer 72

FLOAT convert integer to float 73

FOR.. for - next loop 74

FVAL....................................... convert string to floating point value 76

GOSUB.................................... go to subroutine, saving return address 77

GOTO go to label 78

HALT....................................... stop in lowest power mode 79

HYB... very low power mode with wakeup 80

IF.. branch on result of comparison 81

INPUT...................................... get value from console (buffered) 82

INSTR...................................... returns a substrings position in a string 85
xii TFX-11 UserÕs Guide

INT .. convert float to integer 86

IVAL.. convert numeric string to integer value 87

LEN ... return length of string variable 88

LOG... natural logarithm 89

LOG10..................................... common logarithm 90

MID ... Return a substring of a string 91

ONERR.................................... go to label on error 92

PCLR set I/O pin low 94

PEEK read memory byte 95

PERIOD................................... measure period of signal 96

PICINT external interrupt for wakeup 97

PIN... read state of I/O pin 99

POKE....................................... place byte into RAM 100

PRINT...................................... print to console 101

PSET.. set I/O line high 104

PTOG....................................... toggle I/O line to opposite state 105

RATE....................................... Change sleep interval 106

READRTC load PIC RTC time to local variable 108

REPEAT.................................. execute loop until expression true 110

RETURN return from subroutine 112

RTIME..................................... Read local software real-time-clock 113

SDI... shift register input 114

SDO ... shift register output 116

SETRTC transfer local time in seconds to PIC RTC 118

SIN... Sine 119

SLEEP low power wait over a precise time interval 120

SQR ... square root 121

STIME set local software real-time-clock 122

STOP stop program execution 123

STORE store to datafile 124

STR.. assign ASCII formatted output to string 125

TAN... Tangent 126

TEMP convert number to temperature 127

TONE send square wave out 128

UGET bring character in software UART 130

USEND.................................... send characters out software UART 131
TFX-11 UserÕs Guide xiii

VARPTR.................................. get address of named variable 132

VGET....................................... get variable from user EEPROM 133

VSTORE.................................. store variable to user EEPROM 134

WHILE loop while expression true 135

XMIT+, XMITÐ....................... enable, disable console output 136

TFBASIC Error Messages 137

CHAPTER 5 139

TFBASIC Assembly Language Reference
TFBASIC Assembly Language Reference 140
ASM mnemonics and addressing modes 145
Summary of TFBASIC Assembler Directives 147
Details of the TFBASIC Assembler Directives 148

ALIGN 149

DATA, DB, FCB, DW, FDB, FCC 150

END 152

EQU 153

RES, DS, RMB 154

Assembly Language Subroutines 155
Important Addresses in TFBASIC 157

Interrupt Vector Table 158

CHAPTER 6 159

TFBASIC Internals
TFBASIC Structure 160
TFBASIC Integers 164
TFBASIC Floating Point 167
Characters and Strings in TFBASIC 174
TFBASIC Memory Map 177
WhatÕs New and Different in TFBASIC 180

CHAPTER 7 183

TFX-11 Interfacing
xiv TFX-11 UserÕs Guide

Interfacing to Real World Signals 184
Digital Input Protection 185
Digital Output Protection 186
Using the Onboard A/D Converters 187
Convert a Bipolar Signal Input to Unipolar 188
Operational AmpliÞers 190
Instrumentation AmpliÞers 195

CHAPTER 8 197

TFX-11 Hardware Reference
TFX-11 Hardware Reference 198
TFX-11 Board Dimensions 200
The PR-11 Prototype Board 202
Explanation of Connector Pin Functions 206
TFX Timekeeping 211
TFX-11 Data Storage Options 213
TFX-11 Hardware Description 216

CHAPTER 9 221

Glossary of Terms
Glossary of TFBASIC Terms and DeÞnitions 222

INDEX 229
TFX-11 UserÕs Guide xv

xvi TFX-11 UserÕs Guide

CHAPTER 1
Getting Started
TFX-11 UserÕs Guide

Getting Started

Component
Checklist

The following is a list of what you should have received in your
development kit :

¥ This Users Guide

¥ PR-11 Breadboard

¥ 1.4M 3.5Ó TFTools ßoppy Disk

¥ Parallel cable, DB25 to 9-pin mini-DIN

¥ Serial cable, DB9 to 3.5mm Stereo Phone jack

¥ 9 volt battery

¥ plastic case

¥ Combo screwdriver

¥ MC68HC11 Reference Manual

¥ MC68HC11F1 Technical Data Book

¥ Assorted jacks for the PR-11 breadboard

¥ Goodie bag containing :

 (1) 10k thermistor

 (1) 10k 0.1% resistor

 (1) FET

If anything appears to be missing please contact Onset immediately!

What you will
need to get

started

¥ A TFX-11 board (purchased separately from the development kit).

¥ An IBM compatible computer meeting the minimum system
requirements as described previously.

¥ A Þne point electronics soldering iron and electronics type solder.

Additionally
items you will
Þnd extremely

useful

¥ A benchtop power supply, 9V battery, or 9V battery eliminator

¥ A Voltmeter or Multimeter

¥ An Oscilloscope

¥ The reference book by Horowitz and Hill, The Art of Electronics ,
Cambridge University Press. (ISBN 0-521-37095-7)
2 TFX-11 UserÕs Guide

Quick Start Tutorial
Quick Start Tutorial

Let's try it out! Acknowledging that it is a rare person that wants to read the entire
manual before using their Tattletale, this section presents some simple
instructions and examples to get you up and running.

Do you
understand

BASIC?

Do you have some familiarity with electronics? If you are reasonably
familiar with BASIC and have a fundamental understanding of analog and
digital circuits, continue with this tutorial. If not, you can wing it, but should
probably consider reading an introductory text or Þnding a mentor. For a
good all around electronics reference we recommend Horowitz and Hill,
The Art of Electronics.

OK, unpack your
Tattletale

Remember - it's all CMOS and thus static sensitive! Normal care in
handling CMOS devices is all that must be observed to prevent damage
to the Tattletale. You must take extra precautions if you are in a very dry
climate and get a shock every time you touch something metallic; if you
like wearing wool sweaters; if you work on a wool rug. It is always good
CMOS practice to touch the negative (-) battery lead Þrst when picking up
the Tattletale. Even better is to use a grounded wrist strap and table mat
when handling. Be warned - static damage is easily identiÞed and is NOT
covered under warranty!

Load the TFTools
software

Create a directory on your hard disk where you want to store the Þles and
copy all the Þles from the distribution disk to this directory. The Þrst time
you run TFTools be sure to add the appropriate command line parameters
to designate your serial port location (see the TFTools serial
communications section of the TFTools IDE chapter for an explanation of
the command line parameters). Once this is done the command line
parameters will be stored in a conÞguration Þle so the next time you will
not need to specify them.

Connect the
serial cable

The serial cable has a DB9F connector to connect to the Host computer
and a mini stereo phone plug to connect to the TFX breadboard. PC serial
ports are either DB9M or DB25M. If you only have a DB25M COM port
available you will need to get a DB25F - DB9M adapter, available at your
local Radio Shack.

TFTools supports COM1 thru COM4 on your Host PC. This connection is
used to communicate with the program while it is running. Be sure to
Chapter 1 : Getting Started 3

remember which COM port you physically connect to, and that no other
devices conßict with it! (see note below)

IMPORTANT
NOTES

regarding PC
COM ports

Note 1. PCs share interrupts on the COM ports. Typically COM1 and
COM3 share one, and COM2 and COM4 share another. Only one device
using interrupts can be active on either pair at one time. Therefore, if your
mouse is connected to COM1 DO NOT use COM3, but restrict your
choice to COM2 or COM4. If you have a mouse on COM1 and MODEM
on COM2 then you may use COM4, as long as you do not use the
MODEM or load its drivers while TFTools is active.

Note 2. Some of the earlier SVGA video cards had a conßict with COM4
in IBM 8514 mode. This appears as incorrect colors on the display as well
as system lockup. If you are using IBM 8514 display mode you cannot use
COM4.

Start TFTools Assuming you have loaded the software into a directory on your hard disk
or have the ßoppy disk in one of the drives, move into the directory with
TFTOOLS.EXE. Then type TFTOOLS at the DOS prompt and hit return.

From the DOS prompt, go to the directory that has the TFTools.exe enter
the command TFTools. The program will launch and display the main
window and within that the terminal window.

A Short TFTools Tutorial

Who should use
this tutorial?

This tutorial is recommended for those who have never used a TattleTale
along with an Onset integrated development environment (IDE), such as
TTools, TxTools, or Crosscut. If you have you can probably skip this sec-
tion.

TFTools, Step-by-
step

The following procedures show you how to start the TFTools program,
open a new editing window, and how to enter a short TFBASIC program.

TFX-11
connections for

serial
communication

With the serial communication cable connected to the Tattletale and to the
computer, connect the TFX-11 to a power supply or battery. The Tattletale
start-up message will be displayed and the Ô#Õ prompt will appear below it
4 TFX-11 UserÕs Guide

A Short TFTools Tutorial
Press the ENTER key. The Ô#Õ prompt should be displayed again. This
veriÞes that the serial interface is operating correctly.

Pull down the File menu and select New. This will open a new text editor
window labeled ÒUntitledÓ.

Enter a TFBASIC
example

program into the
text editor

Now you are ready to start entering a TFBASIC program. For this brief
tutorial of TFTools you will be entering a simple TFBASIC program and
then debugging it to demonstrate to you some of the basic features.

Type the following exactly as shown, including all spaces. (Ignore the
error in the Þrst line - it is there on purpose):

forx = 1 to 10
print ÒHelloÓ
next x

Save your
program to a Þle

Pull down the ÒFileÓ menu and select ÒSaveÓ. A dialog box will appear with
the cursor in the name box at the end of the default name ÒUntitledÓ. Type
the name ÒTUTORIAL.TFBÓ and press the ENTER key. The Þle will be
saved under this name in the same directory as the TFTools program.

Perform a syntax
check

Pull down the Tattletale menu and select ÒSyntax CheckÓ (you can also
type ALT-Y). If you typed in the program exactly as was shown, a small
error dialog box should be displayed in the middle of your screen:
Chapter 1 : Getting Started 5

Parse Error! This error was introduced intentionally to demonstrate how the integrated
parser detects syntax errors in your programs. The parser does a syntax
check that detects common syntax errors such as misspelled keywords or
missing arguments, but it does NOT detect programming logic errors!

To exit the ÒParse errorÓ dialog press the ENTER key or click on the OK
button. If you get a message ÒNot enough DOS memoryÓ

You need to set aside more conventional DOS memory for TFTOOLS.
There are two ways to do this. The Þrst and simplest is to go under the
menu selection Tattletale Options and change the entry Maximum ASM
lines to 0. Click on OK and try to do the syntax check. If you still get the
ÒNot enough DOS memoryÓ message then go to the options dialog again
and reduce the Maximum symbols entry to 100. If this does not Þx the
problem you have too little convention DOS memory available and will
have to try method two, which is to exit TFTOOLS and remove any TSRs
or other memory resident programs until you get at least 580kB of
conventional free. If you are running DOS 6.xx you may use the MEM
command from the DOS prompt to determine your available memory. You
may also use MEMMAKER to help you move some of the TSRs out of
conventional memory and into upper memory.

Fix that error! Upon exit from the ÒParse errorÓ dialog box the cursor will be placed in the
line (but not necessarily the exact spot) with the error. Using the mouse or
arrow keys set the cursor under the ÒxÓ after the word ÒforÓ. The ÒxÓ will
then be underlined, showing you the current position of the editing cursor.
Press the SPACE bar to enter a space between the ÒxÓ and the word ÒforÓ.

Again hit an ALT-Y to perform a Syntax Check. If your correction was
successful the ÒNo ErrorsÓ dialog box should be displayed

The ÒNo ErrorsÓ box signal that the parser did not Þnd any errors. The
Syntax Check command tokenizes the program in the edit buffer and
reports any errors, but does not attempt to load or run the program.

To exit the ÒNo ErrorsÓ dialog press the ENTER key or click on the OK
button.

Remember, just because the ÒNo ErrorsÓ box is displayed does not mean
you donÕt have any logic errors in your program, it only means no syntax
errors were detected.
6 TFX-11 UserÕs Guide

A Short TFTools Tutorial
Congratulations! You now have written and debugged a TFBASIC program. While it may
not be the most useful program ever written, it does demonstrate the
basic operations of the TFTools Integrated Development environment
(IDE).

Back to the TFX-
11

This completes the TFTools introductory tutorial. The other TFTools
commands and options are explained in detail in Chapters 2 and 3.

Attach a 9-volt
battery or power

supply

With your computer is running TFTools and the terminal window is
displayed , power up the Tattletale by connecting its battery clip to a
battery or power supply. If you use a power supply, make sure that the
polarity is not reversed when you connect the power to the board, or you
may damage the board.

We strongly recommend a current limited power supply for development.
A 50 mA current limit will protect your Tattletale from most common
disasters. It's not hard to go through a lot of nine-volt batteries when
developing a program for a Tattletale. For example, just leaving a Tattletale
plugged in running at full speed over a weekend can use up half of an
alkaline nine-volt battery. The Archer battery eliminator (Radio Shack
Catalog No. 270-1552B) plugs into a wall plug and the Tattletale's battery
snap connector! It comes with a long cord and works nicely in all
applications we've tested and is available through Radio Shack at a price
(at the time of this writing) of $6.95. Its electrical current is very limited so
if you add external circuitry make sure it can deliver the current or the
Tattletale will not power up properly.

Sign-on message If you have done everything correctly at power on, you will see the
Tattletale sign-on as shown below.

Tattletale Model 11.00
TFBASIC Version 1.00
(C) 1996 Onset Computer Corp.
All Rights Reserved
#

DonÕt worry if your TFBASIC version number is different, as long as it is
greater than 1.00! If your Tattletale signed on then you are all set and may
skip the next section. Otherwise...
Chapter 1 : Getting Started 7

Troubleshooting
If the Tattletale
didn't sign on

Let's go over the likely causes:

(If the parallel port cable is connected, please disconnect it before
proceeding.)

Cable loopback test. First re-check the settings in the Port/Baudrate
dialog box found under the CommPorts... Serial Port... menus. The baud
rate should be 19200, and the Port radio button selected should match
the Port the cable is connected to. With the terminal window open, short
the tip of the phone jack to the next ring down (a paper clip works well)
and type characters at the keyboard. Characters type should appear in
the terminal window. If characters do not appear, check the cable
connection and try again. If characters still do not appear, you may have
a faulty cable or COM port. If there is another COM port available, try
moving the cable to it and repeating the above procedure. DonÕt forget to
reset the Port setting in the Port/Baudrate Dialog if you change to another
COM Port .

If the above test did not work you might try connecting to another
computer. If that is not possible, insert a break-out box between the
terminal and the Tattletale serial cable and verify that your terminal is
driving pin 2.

Check the Battery or Power Supply. If the connections are OK, perhaps
the battery you are using to power the Tattletale is bad. Test it under load
to see if its voltage is correct for its rating.

If the battery checks out and you are convinced that the Tattletale isn't
working, go back to the break-out box and use an oscilloscope to look for
the signal transmitted from the Tattletale. This signal should appear on the
serial connector at pin 3. Each time you power up the Tattletale, it will
send its sign-on message out on this pin and you will see a digital signal
on this pin switching between -4.5V and +4.5V. If you don't see a signal on
this pin, the Tattletale may indeed have a problem. You can send it back to
Onset for a check-out, but I'll wager that you tried the wrong pin or have a
dead battery! Double check and check again!

If the Tattletale passed the scope test, loop back to the Þrst step above
and again check the connection--the Tattletale is sending, you're not
receiving. Press Return. The Tattletale should respond with its prompt :

#

8 TFX-11 UserÕs Guide

A Short TFTools Tutorial
If this test succeeds it proves that the serial interface can send as well as
receive. The number sign, '#' is analogous to the C\>' prompt in DOS and
means the Tattletale is idle while waiting for a command.

It just won't work
- returning the

TFX-11 to ONSET

So nothing you tried worked...

If the above tests failed, or you do not have the tools to properly perform
the tests, then you may need to return the TFX to Onset. Please contact
us at the numbers in the front of this manual to obtain an RMA and
shipping instructions for returns.

PLEASE! - DO NOT RETURN THE TATTLETALE WITHOUT FIRST
OBTAINING A RETURN MATERIALS AUTHORIZATION (RMA)

Attempting a return without an RMA will delay processing.

The Parallel
Cable

The parallel cable should be connected to the Tattletale only after power
has been applied to the TFX-11. If the parallel cable is attached before
power is applied the TFX-11 may not power up correctly.

The parallel cable connects the DB25F (printer) connector on the host
computer to the 9 pin mini-din connector on the PR-11 board. This cable
allows high speed ofßoad of data stored to the ßash as well as the ability
to record your program in the ßash. A program stored in this manner will
be copied to RAM and executed at power up of the TFX-11

All is well, let's
continue!

The TFX is up and running, so now you are ready try to a short example
program. Now that you know the fundamental techniques needed for
running TFBASIC programs, you can use them to run the example
programs in the next section.
Chapter 1 : Getting Started 9

Build a Datalogger, One Step at a Time

Building a
Temperature

Monitor

This section illustrates how to build a simple datalogger application,
starting with a simple temperature monitor and then extending its utility by
adding useful features.

Build this circuit
onto your

breadboard :

The components to construct this circuit are in the goodie bag supplied
with the development kit. The parts include the thermistor, a 10k resistor,
and an n-channel FET. The resistor (10k, 0.1%) biases the thermistor and
together they form a resistor divider, the center of which is tapped to
obtain the temperature signal. The FET acts as an ON/OFF switch that is
used to supply power to the thermistor whenever a temperature
measurement is made.

Enter this
program with the

editor

sleep 0
start: sleep 100

pset 5
print temp(chan(10))
pclr 5

 goto start
stop

The Commands This example code prints the temperature out on the HOST terminal
display. Five commands unique to TFBASIC, SLEEP, TEMP(), PSET,
PCLR and CHAN(), are used. These Þve commands are fundamental to
many datalogging and control applications and are explained below. Be
sure you have a good understanding of how they work before proceeding.

VREG

A/D CH10

I/O PIN 5

T
 F

 X
 -

 1
 1 VP0104N3

10k 0.1%

Thermistor
S G D

S
G

D

10 TFX-11 UserÕs Guide

Build a Datalogger, One Step at a Time
SLEEP The SLEEP instruction combines two important features: precise timing
and power conservation. Each count of the SLEEP argument represents
10 ms (1/100 of a second), so SLEEP 100 sets the SLEEP countdown
timer for one second. When using the SLEEP function it should always be
Þrst initialized by a SLEEP 0 instruction. This resets the SLEEP timer.

When a SLEEP command is invoked it checks the already running
SLEEP timer from the previous SLEEP command to see if it has expired.
If not, it waits in a low power mode until it does expire. When the timer
Þnally expires, the SLEEP timer is updated with the new value from the
current command, and the program proceeds to execute the instruction
statements that follow until the program reaches the next SLEEP
statement. At this point it again checks the sleep timer and again waits
until it expires before updating the counter and allowing the program to
proceed. NOTE: SLEEP commands, to be effective, must allow sufÞcient
time for the intervening statements to execute. If the command between
the two SLEEP instructions take longer than the SLEEP interval, the
SLEEP timer will expire BEFORE the next SLEEP command is reached.
This generates a non-fatal error, signaled by the program writing an '*' out
the serial port, identifying the fact that precise timing has been
compromised due to a timer overrun. To reset the SLEEP timer the
statement SLEEP 0 should be used, otherwise the Þrst invocation of
SLEEP will generate an '*'.

PSET and PCLR PSET sets the corresponding pin(s) to outputs and then sets them to +5V.
PCLR also sets the corresponding pin(s) to outputs, but then sets them to
0V.

CHAN() The function CHAN(n) returns a digital value proportional to the analog
voltage at pin n.

TEMP() The thermistor is in a divider circuit with a 10K resistor. TFBASIC has a
convenient function, TEMP, which converts the output of the converter to
a temperature in hundredths of degrees C. The command only works
correctly when used with the divider circuit and components illustrated
above.
Chapter 1 : Getting Started 11

Run it in TFTools While still in the editor window select Run from under the Tattletale menu
to load and run the program. When you run the program you should see
the following output - hit <CTRL-C> to halt the program :

2340
2340
2340
2340
2340
2340
2340
^C (a CTRL-C halts the program)
#

A slightly more
complex program

The following enhanced program demonstrates a few more commands
and also adds some descriptive comments which are valuable for code
intelligibility and maintenance.

//******* SAMPLE SIMPLE DATA LOGGING PROGRAM ***********
//**** first set up variable parameters****

Start:
print
input "Enter time interval (1/100 sec) : "tInterval
print
input "Enter channel to read : (0-10) "Channel
//****INITIALIZATION****
onerr exit// quit when memory overflows
sleep 0// initialize interval
//**** LOGGING ****

getdata:
sleep tInterval
Store #2, chan(Channel)
goto getdata
//*** ENDING ***

exit:
print ÒLogger fullÓ
stop

Double slashes // This allows the entering of comment text. The tokenizer ignores any text
on the line following the double slash //. Comments enhance readability
and maintainability and take up no space in the executing code. Their
frequent use is recommended.
12 TFX-11 UserÕs Guide

Build a Datalogger, One Step at a Time
Blank line Blank lines are permissible in TFBASIC. Use them to separate logical
blocks to make your program more readable.

INPUT This command allows you to assign values to variables as the program is
executed. Notice there is no punctuation between the string constant and
the variable name.

ONERR When ONERR is used, the program responds to an error instead of
printing the error message 'How?'. We know this example will eventually
overßow the dataÞle and cause an error; the ONERR command forces
this error to cause a jump to line labeled 'exit' instead.

STORE The Store command sends data to the non-volatile serial Flash (SFLASH)
dataÞle. Once data is written to this dataÞle it cannot be read or modiÞed
by the program. The dataÞle pointer is available as the read-only variable
DFPNT. After each write to the dataÞle DFPNT is automatically updated
to point to the next available location. Data is retrieved after the program
is completed. The channel command returns the two bytes from the A/D
converter padded out to four bytes for compatibility with the standard
TFBASIC integer variable. The #2 after the Store command is a
formatting command that says only store the two least signiÞcant bytes of
the four bytes, which, in this instance, are the only bytes that contain
data.

STOP This command ends program execution. It is added here for readability
since it really isn't needed here. The last line of the program halts
execution anyway.

The above code, employing the ONERR command, is a little fancy; the
following code works just as well:

for A = 1 to dfmax
 sleep tInterval
 Store #2, chan(Channel)
next A

Here 'dfmax' is a predeÞned variable that returns the size of the dataÞle.

FOR / NEXT This command, along with NEXT, forms a powerful looping structure in
TFBASIC. The loop starts with the assignment of the Þrst speciÞed value
(1) to A and executing all the code up to the NEXT command. At the
NEXT command, the variable (A) increments and the program goes back
Chapter 1 : Getting Started 13

to the FOR line. The new value of the variable is then compared with the
value after the TO; if it is less, the intervening code between the FOR and
the NEXT is executed again, if not execution is passed to the line
following the NEXT statement.

Note that the current drain after executing the STOP command is as low
as it would be executing SLEEP; the logger is waiting for an incoming
character. Data can then be off-loaded.

Retrieving
stored data

To retrieve the data from the SFLASH you need to be running TFTools.
The TFBASIC program, if running, must be halted and the # prompt must
appear in the terminal. Next, the TATTLETALE menu in TFTools is pulled
down, where either XMODEM off-load or Parallel off-load will copy the
data from the dataÞle to a Þle on the host PC. For Parallel off-load to work
the parallel cable must be connected.

Making your
program boot on

power up

The program may be stored in the non-volatile ßash memory along with
the TFBASIC operating system. When stored the user program will begin
execution from its beginning at power on reset or when relaunch is
selected from the Tattletale menu. The parallel cable must be connected
to allow the program to be written into ßash. To write the program to ßash
select Tattletale Launch (instead of Run) from the menu. This will load the
program and start its execution. To erase the program and get the #
prompt back select Load OS only from the Tattletale menu.
14 TFX-11 UserÕs Guide

CHAPTER 2
The TFTools IDE
TFX-11 UserÕs Guide

Understanding the TFTools Integrated
Development Environment

Introduction to
TFTools

 (For latest release information please be sure to read the README Þles
on the distribution disks)

TFTools runs on a host IBM or compatible PC and provides a complete
interactive programming environment for coding and debugging in
TFBASIC, as well as a complete terminal program for uploading and
downloading data and programs between the host PC and the TFX-11.

DOS only TFTools is a DOS application. There currently is no Windows version, but
it can run from Windows as a DOS application.

The user interface used in TFTools is based on Borland InternationalÕs
DOS based Turbo Vision, which looks and acts a little like Microsoft
Windows but runs in text mode only. This interface allows use of a
Microsoft compatible mouse to select and manipulate items.

The methods of using the mouse, clicking on an object to select it and
dragging to move an object, are similar to the techniques used in
Microsoft Windows. At this time, only the left mouse button is recognized.
Middle and right buttons are ignored. This may change in future versions.

What, you donÕt
have a mouse?

If you don't have a mouse, you can use special keys and key
combinations to select and manipulate objects on the screen. Later in this
text we describe the keyboard equivalents for mouse actions.

TFBASIC
Programming
environment

TFTools provides a userÐfriendly, multi-window programming editor for
developing and maintaining your TFBASIC programs. TFTools also
includes an integrated tokenizing compiler for generating tokenized
TFBASIC code for the TFX-11. There are two main windows, the Terminal
Window and the Editor window. Switching between windows is as simple
as a mouse click (or a single keystroke).

Integrated Editor The TFTools integrated text editor can edit a program up to 64K bytes in
size. In addition to the normal features of a text editor such as Open File
and Save File the editor has speciÞc features to make the debugging and
running of your programs that much easier. From within the editor hitting
Alt-Y provides instant access to a syntax checker. When the syntax
16 TFX-11 UserÕs Guide

Understanding the TFTools Integrated Development Environment
checker Þnds an error, it identiÞes the nature of the error with a dialog box
and places the cursor on the line where the error was found. This allows
rapid corrections of simple mistakes decreasing the time it normally would
take to Þnd and correct the error.

When the program compiles successfully, hitting ALT-R will load and run
your program, automatically switching you to the Terminal window.

Terminal Window TFTools has an integrated terminal program with a scrolling history buffer
for debugging and interacting with your running Tattletale programs. This
terminal program communicates with the TFX-11 through an Onset
supplied cable connected to a PC serial (COM) port.

Program upload and data off-load use a standard PC (LPT) parallel port
connected by a special cable supplied by Onset.

Summary TFTools is a necessary part of development on the TFX-11. It was
designed to provide a single environment for common operations with the
TFX-11. It allows you to write, debug and tokenize TFBASIC programs as
well as upload the programs and off-load data.
Chapter 2 : The TFTools IDE 17

TFTools Serial Communications

Serial Port
conÞguration Þle

TFTools attempts to initialize the PC's COM Port using three different
methods. If no conÞguration Þle is present (TFTools.CFG) and if no
command line options are used, by default COM2 is opened with
parameters of 19200 baud, 8 data bits, no parity and 1 stop bit. If a
conÞguration Þle is present (a conÞguration Þle is automatically created or
updated with the current conÞguration parameters each time TFTools
terminates), the COM Port is set up as speciÞed in the conÞguration Þle.
Command line options can be used to override the values stored in the
conÞguration Þle. The command line options are used in this manner
(items in square brackets are optional) :

Invoking TFTools
from the DOS

prompt

TFTOOLS [filename] [-p port] [-b baud] [-h]

It is permissible to have spaces between the option letters (p, b) and the
argument (port, baud). Options can be speciÞed in any order.

Explaining the
Command line

TFTOOLS is the name of the executable program and the only non-
optional item.

[Þlename] The name of a DOS text Þle that will be opened in an edit
window.

[port] A number from 1 to 4 to specify the Com Port number.

[baud] One of these: 300, 600, 1200, 2400, 4800, 9600, 19200, or 38400

The 'h' option displays this information in case you forget next time you
run the TFTOOLS.
18 TFX-11 UserÕs Guide

Navigating the TFTools Main Windows and Controls
Navigating the TFTools Main Windows and
Controls

The TFTools Main Screen

Explanation of
TFTools Windows

There are two windows you will be working with in TFTools, the Terminal
windows and the Editor window. These windows share many operational
features; they may be independently moved, resized, overlapped,
zoomed, and scrolled. There may be multiple editor windows open, but
only one terminal window. Only one window may be active at a time, and
this window will appear on the top of the others. The windows continue to
exist and be displayed, (as long as the active window does not cover
them) even if they are not the active window. The active window has a
double line border, and a window in the background has a single line
border with no close box, scroll bars, or zoom box.

Menu Bar

Status Line

Terminal Window

Editor Window

Scroll Bars

Window Titles

Close Box

Window Resize

(Inactive)

(Active)

Zoom Box

Line # : Char #

Pull-Down Menu

Cursor

Move
Chapter 2 : The TFTools IDE 19

Startup screen When you Þrst start TFTools, you will immediately see one window which
Þlls the screen. This window displays any characters that are received by
the serial port (including any characters you have typed and the Tattletale
has echoed back).

By clicking on the Zoom box, you can toggle the size of the window
between full screen and a smaller size. You can move the window by
placing the mouse cursor anywhere along the top of the Title frames and
then pressing and holding the left mouse button down while moving the
mouse. The window frame will follow the mouse until you release the
button.

There are four scroll arrows located at the end of each scroll bar. Clicking
on these causes the text in the window to scroll one line in the direction of
the arrow, either horizontally or vertically. Click and hold on these arrows
to scroll continuously. You can move more quickly through a document by
click-hold-dragging on the ÒThumbÓ. The Thumb is the small box that only
appears in the scroll bars when the text overßows the window boundaries,
either vertically or horizontally. Moving the Thumb toward the top moves
closer to the start of the document and moving the Thumb toward the
bottom moves closer to the end of the document. The window contents
won't scroll until the Thumb is released.

Terminal Window. When you Þrst start TFTools the Terminal window Þlls the screen. This
window displays characters that are received by the host PC serial port.
Keyboard characters go out the host PC serial port to the TattletaleÕs main
UART. Tattletale replies sent out via the TFX-11 main UART appear in this
terminal window. There can be only one terminal window and, while it can
be hidden by an editor window, it cannot be closed. The Terminal Window
has a 16000 character circular buffer. This holds about 8 pages of packed
text. When the buffer Þlls, the oldest characters are discarded. Characters
in this window cannot be saved using cut and paste, but they can be
captured to Þle. Only characters received after Capture to File has been
activated will be saved. The number of characters saved is limited only by
disk space.

Editor Window This is the text editor window. The title area contains the full path and the
name of the Þle being edited. When Þrst opened using the menu
commands File New the default name is ÒUntitledÓ. Notice the Close box
in the upper left corner (called Cancel in a dialog window). When clicked
on, the Close box attempts to close the DOS Þle associated with this
window. If the window text has been modiÞed since the last save you will
20 TFX-11 UserÕs Guide

Navigating the TFTools Main Windows and Controls
be asked if you want to save the changes. You can agree to save
changes, throw out all changes since the last save, or cancel the close.

When you open a program Þle, the text of the Þle is viewed in a File Edit
Window. To open this window with the Þle you would like to edit, select
Open from the File menu and you will be presented with the Open Þle
dialog box.

The Editor Many edit windows may be open at once, but only one can be active.
Each edit window is an independent text editor. Text may be cut from one
window and pasted to another. Characters are entered just before the
ßashing underline Ò_Ó cursor. Backspace removes characters before the
cursor and Delete removes characters above the cursor. If a block cursor
is displayed, the editor is in overwrite mode and each new character typed
will overwrite the one under the cursor. The cursor type and editing mode
are selected with the INS and DEL keys.

Editor windows continue to exist and be displayed even if they are not
currently active. In the previous Þgure the Terminal Window isunselected,
and therefore the border is a single line and the scroll bars (if any) are
invisible. In contrast, the Untitled window has the double line border
because it is selected.

To select a block of text, click and hold the mouse button over the
beginning of the block and drag the mouse to the end of the block. When
you release the mouse button, the cursor will appear at the point you
release and the block will be selected. You can then cut, copy, paste or
clear this block. Moving the mouse pointer will have no effect until you
click again, which will deselect the block. Moving the cursor causes the
selection to be lost, however.

You can copy and paste between edit windows by selecting the text in one
window and copying it to the clipboard, then switching to another window
and pasting. You cannot use cut and paste in the Terminal window. The
contents of the Terminal Window may not be cut or pasted, but the using
the Save to File command will store incoming characters to a Þle which
can later be opened and edited.

Undo The integrated editor has a limited Undo capability, using a Hot-Key
keyboard command or Undo in the Edit Menu. It will only Undo one
operation back, and as soon as you move the cursor, the Undo buffer is
cleared and the previous operation cannot be undone.
Chapter 2 : The TFTools IDE 21

Window titles This is always ÒTerminal WindowÓ for the terminal window. In an edit
window, if the Þle is opened using New and has not yet been saved, it will
be labeled ÒUntitledÓ. Otherwise it contains the full path and name of the
Þle being edited.

Zoom Box By clicking on the Zoom box, you can toggle the size of the window
between full screen and a smaller size. The smaller size is determined by
your last resizing of the window, which can be done manually by
ÒgrabbingÓ the resize corner and setting it to the size you want, or by using
one of the Window menu commands, Tile or Cascade.

Move The Move arrow points to the top frame of the window, where the titles are
located. You can move the window by clicking and holding anywhere
along this top frame and then moving the mouse. The window frame will
follow the mouse until you release the button.

Scroll Arrows Scroll arrows cause the text in the window to scroll one line in the
direction of the arrow. Click and hold on these arrows to scroll
continuously.

Scroll Box
ÒThumbÓ

You can move more quickly through a document by click-hold-dragging on
the scroll box Thumb. Moving the Thumb toward the top moves closer to
the start of the document, and moving the Scroll Box toward the bottom
moves closer to the end of the document. The window does not scroll until
the Scroll Box is released.

Resize The size of the window can be adjusted by click-hold-dragging on the
Resize corner of the window frame.

Zoom By clicking on the Zoom box, you can toggle the size of the window
between full screen and a smaller size.

Close File The Close box appears only in Editor windows since the Terminal window
cannot be closed. The Close box is in the upper left corner of the window.
The Close box attempts to close the Þle displayed in this window. If the
text has been modiÞed since the last save you will be prompted with a
dialog box asking if you want to save these changes. You can agree to
save changes, throw out all changes since the last save, or cancel the
close.
22 TFX-11 UserÕs Guide

Navigating the TFTools Main Windows and Controls
The Open Þle
dialog box

This dialog box consists of four parts. The Name box contains a Þle name
or wild card string. The Files box contains a list of Þles and sub-directories
in the current directory. There is a scroll bar at the bottom of this box so
you can access all the listings. At the bottom of the dialog box is
information on the currently selected Þle. There are four buttons down the
right side of the dialog: Open, Cancel, Parent and All (the label of this
button can change, see below).

Choosing a Þle in
the Open File

dialog

To choose a Þle for opening, type the name of the Þle into the Name Þeld
and click Open (or hit the Enter key). A simpler way is to use the Tab key
to move focus to the Files list box and then use the arrow keys to highlight
the Þle you want to open. When the Þle is highlighted, click Open (or hit
the Enter key). The simplest way to open a Þle is is to double click on the
name in the Files list box.

Wild Cards You can enter a wild card string (with optional path) in the Name box and
the Files box will attempt to show all Þles matching this string. Be careful,
if you use a name of a Þle that doesn't exist, and you click OK, a new
window will open with that name. Then if you save the window, a Þle of
that name will be created on your DOS disk. To cancel this dialog, you
have three choices: click on the Cancel button, click on the Cancel box
(on the left side of the top box frame) or hit the Escape key.

Switching
directories

Selecting the Parent button moves you up one level in the directory tree
and displays the Þles and sub-directories available there. The Next button
cycles among three choices. It begins with the label All to show all Þles
and sub-directories. If you click it once, it will change to TFB meaning that
only Þles ending in the extension ".TFB" will be displayed (and all sub-
directories). You can use this extension for all your TFBASIC programs
and this button will show only those. If you click the button again it will
change to Dir and show only the sub-directories in the current directory.
Clicking again returns to All displaying all Þles and sub-directories.

The bottom button can be customized. You can save up to Þve extensions
of your own (in addition to the All and Dir options which are always
available). Hold down the Shift key while you select the button. You will
see a dialog box that allows you to select any of Þve input boxes so you
can type up to three characters in any box. Blank entries are ignored.
Chapter 2 : The TFTools IDE 23

Navigating the IDE without a Mouse

Equivalent
Keyboard

commands

If your host computer does not have a mouse, if you only have one serial
port and need to give up the mouse to connect the TFX-11, or if you just
prefer the keyboard to the mouse, you may use keyboard command
equivalents to perform all the functions of the mouse.

 Dialog Box Navigation Keyboard Equivalents
Cancel Esc
OK Enter

Move within group Up/Down Arrows

Toggle check box Space

Toggle Radio Button Space

Next Group Tab

Previous Group Shift-Tab

 Editing Control Functions Keyboard Equivalents

Move Cursor Arrow Keys

Cursor Word Left Ctrl-Left Arrow

Cursor Word Right Ctrl-Right Arrow

Delete Line Ctrl-Y

Marking Blocks Shift-Arrow keys

Select to Beginning of line Shift-Home

Select to End of line Shift-End

Select to Top of Page Shift-PgUp

Select to Bottom of Page Shift-PgDn

Begin Block Ctrl-K B

End Block Ctrl-K K

Move cursor one page PgUp, PgDn

Move to Beginning of Line Home

Move to End of Line End

Delete to End of Word Ctrl-T

Delete character at cursor Del or Ctrl-G

Toggle Insert Mode Ins

Delete to end of line Ctrl-Q Y

Move one character left Ctrl-A

Move one word left Ctrl-S

Move one character Right Ctrl-D

Move one word Right Ctrl-F

Delete Character to Left Backspace or Ctrl-H
24 TFX-11 UserÕs Guide

Navigating the IDE without a Mouse
 Main/Submenu items Hot Key
Key

sequence Term Edit

File Alt-F
New - Alt-F N * *
Open... F3 Alt-F O * *
Close - Alt-F C *
Save F2 Alt-F S *
Save as... - Alt-F A *
Print - Alt-F P *
Print Selection - Alt-F R *
Change Dir... - Alt-F H * *
DOS shell - Alt-F D * *
Quit Alt-Q Alt-F Q * *

Edit Alt-E
Undo Ctrl-U Alt-E U *
Cut Ctrl-X Alt-E T *
Copy Ctrl-C Alt-E C *
Paste Ctrl-V Alt-E P *
Clear Ctrl-Del Alt-E L *
Paste Date/time Alt-D Alt-E D * *
Set PC Time - - * *
Show clipboard - Alt-E S * *

Search Alt-S
Find... - Alt-S F *
Find again Ctrl-L Alt-S A *
Replace - Alt-S R *

TattleTale Alt-T
Run Alt-R Alt-T R * *
XMODEM off-load - Alt-T X
Erase DataÞle - Alt-T E
Launch Alt-L Alt-T L
Relaunch - Alt-T A *
Parallel ofßoad... Alt-0 Alt-T P *
Suspend TFX-11 - Alt-T S *
Load OS only - Alt-T O *
Syntax Check Alt-Y Alt-T Y *
Options... - Alt-T P *

CommPort Alt-C
Serial Port... Alt-P Alt-C S *
Hex display Alt-X Alt-C H *
Capture to Þle... Alt-Z Alt-C C *
Parallel Port... - Alt-C P *

Windows Alt-W
Tile - Alt-W T * *
Cascade - Alt-W C * *
Next F6 Alt-W N * *
Previous Shft-F6 Alt-W P * *
25 line screen - Alt-W 2 * *
50 line screen - Alt-W 5 * *
Color Screen - Alt-W O * *
Blk/wht screen - Alt-W B * *
Chapter 2 : The TFTools IDE 25

Help Alt-H
About - Alt-H A * *
Command line options - Alt-H C * *
TFBASIC summary - Alt-H T * *
Keyboard equivalents - Alt-H K * *
26 TFX-11 UserÕs Guide

CHAPTER 3
TFTools Pulldown Menu
Command Reference
TFX-11 UserÕs Guide

FILE

New Select this item to create a new program Þle. The default name will be
ÒUntitledÓ. When you go to save it you will be prompted for a new name to
save it as.

Open... This command is used when you want to open an existing program Þle. It
reveals the Open File dialog box which is shown below.

File name edit box. This is where the name of the Þle you want to open
is entered. By default, the Name box will contain *.* and the list box will
display all Þles and subdirectories. You can enter a wild card string (with
optional path) and the Files list box will show all Þles matching this string.
If you enter the name of a Þle that does not exist and click Open you will
open a new editor window with that name. Then when you close the
window, a Þle of that name will be created on your disk. To choose an

Close box

File List Box

File name edit box

File info box

File history drop-down Open selected Þle

Parent button

File extension
mask selector

Scroll Bar

Cancel button
28 TFX-11 UserÕs Guide

existing Þle for opening, click once on the Þle in the Þle list box and it will
appear in the Þle edit box. Then click Open (or press the Enter key) and
the Þle listed in the ÒNameÓ Þeld will be opened

File List box. A single click on a Þle name here will select it and copy the
name to the Þle name edit box. A double click on the Þle name in this box
will open it directly.

Open. This button has the same effect as hitting the Enter key, which is to
open (or create if it doesnÕt exist) the Þle that is in the Name box.

Cancel button and Close box. There are three ways to close this box
without making any changes; press the Escape <Esc> key, click on
Cancel, or click on the Close box.

File history drop down. This displays a history of the most recent Þles
opened. It is not saved between sessions.

Parent Button. This moves you up to the next higher directory. There is a
Ò..\Ó selection in the File list box which appears if you are in any other
directory than the root. Clicking on this will have the same effect as
clicking the Parent button.

File info box. The Þrst line is the current path and Þle mask as speciÞed
by the Þle name edit box. The second line displays the name, size in
bytes, and creation date and time of the currently highlighted Þle in the Þle
list box.

File extension mask selector. This button selects up to seven
predeÞned Þle masks. The active Þle mask determines which Þles will be
displayed in the list box. All is equivalent to *.*. Each time the button is
clicked the next extension in the list is selected. When the end of the list is
reached it loops back to the Þrst entry.

The ÒAllÓ and ÒDirÓ options are always available. In addition, this list can
include up to Þve extensions of your own. To enter your own extensions
you must Þrst enter the Extensions dialog box. To do this you must hold
down the shift key and then click the File extension mask selector button.

To add your own extensions, enter up to three characters in each box.
These extensions are saved in the CFG Þle when you exit TFTools. The
Chapter 3 : TFTools Pulldown Menu Command Reference 29

next time you want to use one of the new extensions, just click on the
selector button until the desired extension is displayed.

Close Close the currently selected program Þle. If changes have been made in
the Þle since it was opened, you will be asked if you want to save changes
before closing.

Save Save the program in the currently active edit window to the program Þle of
the same name.

Save As This opens a dialog that is similar to the Open Þle dialog. It is used to save
the program in the currently active edit window to a Þle of a different
name. You will be prompted to enter the new Þle name. If the Þle already
exists, it will ask to conÞrm before overwriting the Þle. If you select a Þle
from the Þle list it will save to that name, but it will Þrst verify that you do
want to overwrite the existing Þle.

Print Send the program in the edit window to the DOS PRN device for printing.
In this version of TFTools, no header or page eject commands are sent to
the printer.

Print selection Send the part of the text that is selected (highlighted) to the printer. If no
text is currently selected, you will be notiÞed and no action will take place.

Change dir... Opens a dialog that allows you to change the current DOS working
directory. You will be in this new directory when you exit TFTools.

Directory name box. This is where the name of the directory you want to
move to is entered or displayed. By default, the Name box will contain the
current directory. No Þles are displayed.

Directory
Name box

Close box OK button

Change
Directory
button

Directory
Tree

Scroll Bar

Revert Button

History Drop Down
30 TFX-11 UserÕs Guide

Directory tree. This is a graphical display of the directory hierarchy. A
single click on a directory or subdirectory name will select it and copy the
name to the edit box. A double click the Directory name in this view will
move you into that directory automatically.

File history drop down. This displays a history of the most recent
directories opened. It is not saved between sessions.

Change Directory button (Chdir). This button moves you to the
directory highlighted in the tree window. It is the same as double clicking
on the directory in the window. If the name in the Directory name box is
different than the directory highlighted, the name box entry will be
overwritten.

Revert. This puts you back in the same directory as when you entered
the dialog.

DOS shell Suspends TFTools and launches a new copy of the DOS shell. IT DOES
NOT REMOVE TFTOOLS FROM MEMORY so there won't be much
memory for other programs! This will also close the serial port. You can
execute any DOS commands here; even other communications
programs. When you're done, use the DOS command EXIT to return to
TFTools. The serial port will be opened in the same state it had before,
except that any characters appearing at the serial port while running the
second DOS will be lost. Don't forget: TFTools is still in memory.

Quit Exit TFTools, free up its memory and return to the DOS command
interpreter.
Chapter 3 : TFTools Pulldown Menu Command Reference 31

EDIT

Undo Select this item to undo an editing action. Be aware that once you move
the cursor, all Undo information is lost.

Cut Remove the currently selected text and save it in the clipboard for later
pasting.

Copy Save a copy of the currently selected text in the clipboard for later pasting.
Unlike Cut, this does not remove the selected text.

Paste Insert whatever is in the clipboard at the cursor. Use Cut or Copy to get
text into the clipboard.

Clear Remove the currently selected text without saving a copy in the clipboard.
You can Undo a Clear but not after the cursor has been moved.

Paste Date/time Insert a text string showing the current date and time of your PC's clock
into the document. If the Terminal Window is currently selected, a date
and time string will be sent out the serial port to the Tattletale. Just
selecting this item sends a string of the form:

02/13/93 13:53:52

where 02 is the month, 13 is the day and 93 is the year. If you hold the
Shift key down while this is selected, a longer date/time string of this form
is used:

Friday, February 12, 1993, 13:53 PM
32 TFX-11 UserÕs Guide

Holding down the Control key while executing this command causes the
country-code information in your conÞguration Þle to be checked. The
date and time will then be pasted in the format normally used in your
country.

Set PC Time This selection allows the user to set the PCÕs internal clock without having
to shell to DOS. On opening it displays the current PC time. If you modify
the time and click OK it will become the new PC time. The PC time is
stored in the TFX-11 on launching, so accurate time here will help assure
correct time in the TFX-11.

Show clipboard Opens an editor-type window showing the contents of the Clipboard. You
can edit the contents of the Clipboard using the normal editing
commands. Only portions of the Clipboard that are selected are available
for pasting into other edit windows, so be sure to select that portion of the
Clipboard text before exiting this window.
Chapter 3 : TFTools Pulldown Menu Command Reference 33

SEARCH

Find... A dialog box will appear to allow you to enter a string to look for in the
document.

OK. This button has the same effect as hitting Enter key, which is to move
you to the directory that is displayed in the directory name box and exit
the dialog.

Cancel. Choose Cancel if you want to exit and forget the whole thing.

Close box. There are two ways to close out of this dialog box without any
changes; press the Escape <Esc> key, or click on the Close box.

Text to Þnd edit box. Type the string to search for into the box labeled
ÒText to ÞndÓ. Qualify the search with the search options check boxes.

Text string history drop down. This displays a history of the most
recent directories opened. It is not saved between sessions.

Search Options. You can check either or both of the options, Case
sensitive and Whole words only, by clicking the mouse between the
brackets to the left of the labels. Alternatively you may select either or
both of these options by using the Tab and Arrow keys to work the
highlight down to the selection, and then hitting the Space key to toggle
the check mark on and off.

Close box

Text to Þnd
edit box

Search options

OK button

Cancel button

Text string history drop down
34 TFX-11 UserÕs Guide

Find Again Once a string has been found with Find, you can continue to look through
the document for more occurrences of the same string. It is usually easier
to use the Ctrl-L keyboard equivalent for this command.

Replace... A dialog box will appear to allow you to enter a text string to search for
and a second string to replace it with.

Use of this dialog is similar to that of the Find dialog except that a second
text box is available and there are some more options. Be aware that
entering nothing in the New text box means that found text will be erased.
Notice that Prompt on replace is normally on (that box is selected with an
x). Checking Prompt on replace and Replace all will automatically look for
the next occurrence of Text to Þnd after each replace but will ask you Þrst
before a replacing text.

Close box

Text to Þnd
edit box

Search/ Replace OK button

Cancel button

Text string history drop downs

 options

Replacement
text edit box
Chapter 3 : TFTools Pulldown Menu Command Reference 35

TATTLETALE

Run If selected while the Terminal Window is active, a Run command is sent to
the Tattletale to execute the program currently in RAM. If selected while
an edit window is active, the program in the editor is Þrst checked to see if
it has been modiÞed. If it has been modiÞed, TFTOOLS then compiles it
and uploads it to the Tattletale. Then the focus switches to the Terminal
Window and TFTOOLS sends a RUN command to the Tattletale, starting
execution of the loaded program. If power is totally removed from the
Tattletale the program will be lost.

XMODEM
Off-load...

This initiates an XMODEM off-load of the ßash dataÞle on the TFX-11.
Since this is done serially it will be substantially slower than using the
parallel version. This option is deigned for small Þles or remote
applications that only have a serial connection. Otherwise the parallel
version is recommended.

Erase dataÞle... This command allows erasure of the ßash dataÞle over the serial port. It
does not erase the program. To access this with a serial only link you
must be able to break the TFBASIC program and return to the # prompt.

Launch Causes the program in the edit buffer to be tokenized and loaded into the
TattletaleÕs ßash storage. The DataÞle is erased and the dataÞle pointer is
reset to 0. If there is data in the Tattletale it puts up a dialog box that
allows you to save the data before the Launch proceeds.

 Relaunch Causes a reset of the Tattletale which will restart the currently burned in
program. The dataÞle is not erased nor is the dataÞle pointer reset.
36 TFX-11 UserÕs Guide

Parallel off-load... This command is only enabled in the Terminal Window. It presents you
with a dialog box to allow you to choose how to off-load the dataÞle of the
Tattletale. You cannot ofßoad less than the number of bytes given in the
ÒBytes to off-loadÓ edit box, but you may ofßoad more, up to the number
speciÞed in ÒSize of dataÞleÓ. After Þnishing with this dialog box check OK
and a second dialog opens that allows you to select the name of the Þle
to save the data to. You can save this Þle anywhere in the DOS directory
tree.

Deployment number. Number of times unit has been launched.

Launched on. This is the PC date and time stored when the program was
launched. It is also used to set the TFX-11 internal clock on launch.

Size of dataÞle. This is the total number of bytes available for storing
data in the SFLASH after the program and other information is stored.

Bytes stored in dataÞle. This is the total amount of data bytes stored in
the SFLASH.

Bytes to off-load. Input box to enter the number of the bytes of the
dataÞle to off-load.

OK. Clicking here will start the data off-load

Cancel. Clicking here exits without any action.

Suspend TFX-11 Places the TFX in its lowest power state.
Chapter 3 : TFTools Pulldown Menu Command Reference 37

Load OS Only Loads only the TFBASIC operating system and requires the parallel cable
be attached to do so. This erases any program loaded in the Tattletale so
the next time it boots up it will give a sign-on message followed by the #
prompt. This returns the TFX-11 to the way it was when it was shipped.

Syntax check Tokenizes the program in the edit buffer and reports errors but does not
attempt to load the program into the Tattletale. This is affected by the
Option ßags (see below). Upon a successful check, an information box
will appear showing the size (in bytes) of the compiled program, the size
of the program header (this is information generated by the compiler and
will be added to the front of the program) and the size of the variables
area used by this program.

Options... Sets startup options for tokenizer and program upload options:

Embed line numbers. Line numbers relating to the text Þle will be
inserted in the listing Þle. This helps relate tokens to actual code.

Create List File. The next time the tokenizer runs (whether through the
Run or Launch command or the Syntax check command), an annotated
listing of the program is stored in a DOS text Þle. The Þle will have the
extension LST.

Maximum symbols. This sets the amount of memory allocated by
TFTools for its symbol tables. Reduce this number if you get an Ònot
enough DOS memoryÓ message.
38 TFX-11 UserÕs Guide

Maximum ASM lines. This setting determines the amount of memory
allocated for compiling assembler instructions. If you do not have any
assembly code you may reduce this number to allow more memory for
symbols. Reduce this number if you get an Ònot enough DOS memoryÓ
message.
Chapter 3 : TFTools Pulldown Menu Command Reference 39

COMMPORT

Serial Port... Allows you to set the com port parameters. These values will be stored in
a Þle called TFTOOLS.CFG when you exit TFTools. Notice that these
items are groups of radio buttons and only one item of a group can be
selected at any one time.

The Port radio button selects one of the four serial ports available, and the
baud rate default is 19200.

Hex display Toggles the Terminal Window into and out of hexadecimal display mode.
In this mode, any incoming characters are displayed in hexadecimal form
in rows of 16 characters on the left side of the screen. The ASCII
(printable) equivalent is displayed in 16 character rows on the right side of
the screen. Toggling this mode always forces output to start on a new line.

Capture to File... This selection permits the collection of all terminal screen data, both input
and output, to be captured to a disk Þle. It is useful for debugging or direct
recording and storing of data.

The Þrst time you select this command in a session you will be presented
with the open Þle dialog box, which prompts you for the name of the Þle to
40 TFX-11 UserÕs Guide

capture to. (For details on the operation of the Open Þle dialog box, see
ÒOpen...Ó under the Main Menu command ÒFileÓ) A default name of
CAPTURE.TXT is already Þlled in and can be accepted by simply clicking
on Open or hitting the Enter key. After the Þle is open and active you can
use Alt-Z or the menu item to toggle the capture mode on and off. Also,
the word "CAPTURE" is displayed in the Status line in the lower-right
corner of the display. In color mode, the status line background is
changed to green as another reminder. When you toggle capture off, the
Þle is closed and the status line returned to normal.

There are two Þle capture modes, Append and Overwrite. The default
mode is overwrite and that means each time you activate Capture to Þle
with a Þle already open you will overwrite and therefore loose the contents
of the existing Þle. You can change this to append by holding down the
Shift key while selecting Capture mode. You will be asked if you want to
change the Capture mode to append. Special note - To capture to a
printer you may use the special DOS logical name of PRN as the Þle
name.

Parallel Port... This opens the following dialog which presents you with the selections for
the Parallel port to be used to communicate with the Tattletale. Your
selection will become the start-up default as it will be automatically saved
in the conÞguration Þle when you exit the program.
Chapter 3 : TFTools Pulldown Menu Command Reference 41

WINDOWS

Tile, Cascade These allow you to automatically rearrange all the open windows on your
screen.

Next, Previous These will bring different windows into focus in forward or backward order.
These are only needed if a particular window is not visible (in which case,
the mouse can be used to bring it into focus by clicking on it) or if you
have no mouse.

25 line screen Sets the display mode to the default 80x25 character display.

50 line screen If you have an EGA or VGA screen, this item toggles the screen to a
higher resolution mode. EGA is capable of a 43 line per screen mode and
VGA is capable of a 50 line per screen mode. This has no effect on CGA
screens.

Color screen Puts a color-capable screen into color mode. Don't use this if you have a
monochrome screen.

Blk/wht screen Puts the screen in a black and white mode. This is most useful on
monochrome LCD screens.
42 TFX-11 UserÕs Guide

HELP

About Selecting this item displays the About Box dialog showing the version
number of TFTools you are using. The information located in here is
important if you ever have to contact technical support.

Command line
options

Shows options you can set when you start TFTools from the DOS
command line.

TFBASIC
summary

A list of TFBASIC commands and keywords in alphabetical order. To see
more of the list, use the arrow keys or use the mouse to move the scroller
thumb. You can get a brief explanation of a command by double clicking
on it with the mouse. Keyboard users can step through the commands
with the TAB key and select a command by hitting Enter. If there is a "See
also..." highlighted selection, you can change to that topic by selecting it in
the same way you selected the original command. When you're done with
the help system, either click on the Close box or hit the Escape key.

Keyboard
equivalents

A list of TFTools menus and editor actions and the key or key
combinations that trigger them. It is essentially a copy of the tables at the
end of Chapter 2 under the heading ÒNavigating the IDE without a
MouseÓ. When you're done with the help system, either click on the Close
box or hit the Escape key.
Chapter 3 : TFTools Pulldown Menu Command Reference 43

44 TFX-11 UserÕs Guide

CHAPTER 4
TFBASIC Language Reference
TFX-11 UserÕs Guide

Legend

¥ str$ string
¥ x expression
¥ v variable
¥ m format
¥ \x 8-bit character given by x
¥ $ Inline assembly code
¥ label line reference
¥ [] the commands enclosed within these

brackets are optional
46 TFX-11 UserÕs Guide

PredeÞned Read-only variables in TFBASIC
PredeÞned Read-only variables in TFBASIC

These variables allow you to access certain useful internal values in
TFBASIC. If you try to assign a value to these variables it will have no
effect. In the future it may generate either a syntax or HOW? error.

BAUDGET Returns the value of the main UARTÕs current baud rate

DFERASED Returns 1 if the SFLASH dataÞle is empty

DFMAX Maximum dataÞle address (size of dataÞle - 1).

DFPNT Points to the dataÞle location that will receive the next data byte.

MODEL Contains model number of TFX.

VERS Version of TFBASIC * 100.

FPERR Floating point errors. Each of the Þve errors has a bit assigned to it.
FPERR is cleared any time it is accessed so it should always be assigned
to a user variable Þrst before checking it.

BBPWR Returns a value that indicates whether the power source is from the main
supply or battery backup. A value of 0 indicates the main power supply is
active, and a non-zero value means the power source has switched to the
backup battery.

INTSTATUS This is a read only variable that can be used anywhere in the program to
see if the PIC interrupt is enabled. 0 = disabled, 1 = enabled. This variable
is set when TFBASIC successfully completes the PICINT command, and
is reset when XIRQ completes processing of the related interrupt.
Chapter 4 : TFBASIC Language Reference 47

TFBASIC Quick Reference (grouped by function)

Program
Commands

¥ ASM $...end Assemble HC11 code inline
¥ ASM<addr>...end Assemble HC11 code at <addr>
¥ CALL x1,x2[,v] Call x1 with registers = x2; returning in v
¥ CBREAK label Go to label if CTRL-C character detected
¥ CBREAK Return CTRL-C handling to default
¥ COUNT <v> Start counting transitions on I/O 0 and

store in variable
¥ COUNT Stop counting transitions
¥ DIM <label> (size)[,(size)] Dimension variable <label> to 'size'
¥ FOR v=x1 to x2 [STEP x3]... NEXT v Initiate iterative for loop
¥ GOSUB label Execute subroutine at label
¥ RETURN Return from subroutine
¥ GOTO label Go to label
¥ IF x ... [ELSE...] ENDIF Execute 1st command block if x is true,

else 2nd block
¥ INPUT [s] v[,x][,#x][,\x][;] Prompt with s, load variable v (see full

description for complete arg list)
¥ ONERR label [,v] Go to label if error [, error in v]
¥ ONERR Return error handling to default behavior
¥ POKE addr, value Store byte 'value' at address 'addr'
¥ PRINT "s", [#n][,x][,\x][;] Print string to console
¥ REPEAT ... UNTIL x Repeat command block until x is true
¥ STOP End program execution
¥ UGET x1, x2, v, x3 Store data from software UART to string
¥ USEND baud, <string> Send string data out software UART
¥ VSTORE addr, value Store value to UEEPROM address addr
¥ WHILE x ... WEND Execute command block while x is true
¥ XMIT+, XMITÐ Enable, disable console output

DataÞle Storage
Commands

¥ STORE [#n],x... Store x to EEPROM, using n bytes

Functions ¥ ABS(x) Absolute value of x
¥ AINT(x) round ßoat down to integer
¥ ASFLT(x) Interpret x as ßoat
48 TFX-11 UserÕs Guide

TFBASIC Quick Reference (grouped by function)
¥ ATN(x) Arctangent of x
¥ BAUDSET (x) Sets the main UART baud rate
¥ COS(x) Cosine of x
¥ COUNT (x) Return number of cycles at I/O pin 0 in

time x
¥ CHAN(x) A-D conversion of channel x
¥ EXP(x) Return e raised to the x power
¥ FIX(x) Integer part of x as integer closer to zero
¥ FLOAT(x) Convert integer x to ßoat
¥ FVAL(str$) Convert string to ßoat
¥ INT(x) Integer part of x as integer more

negative
¥ INSTR([x,] str1$, str2$) returns a substrings position in a string
¥ IVAL(str$) String to integer
¥ LEN(str$) Return length of string
¥ LOG(x) Natural log of x
¥ LOG10(x) Common log of x
¥ MID(str$,x1,x2) Return substring of str$
¥ PEEK(addr) Byte at address 'addr'
¥ PERIOD (x1, x2) Time for x1 cycles of signal to pass - x2

is timeout
¥ SIN(x) Sine of x
¥ SQR(x) Square root of x
¥ STR (["s"][,#n][,x][,\x]) Create string
¥ TAN(x) Tangent of x
¥ TEMP (x) Convert x to degrees C (times 100) for

thermistor input
¥ VARPTR (v) Address of variable v
¥ VGET (x) Return value of UEEPROM at address x

Digital I/O
Control

¥ PCLR x1 [,x2 . . .] Clear speciÞed I/O pins to low state
¥ PIN (x1 [,x2, . . .]) Value formed from speciÞed input pins
¥ PSET x1 [,x2 . . .] Set speciÞed I/O pin to high state
¥ PTOG x1 [,x2 . . .] Toggle state of speciÞed I/O pin
¥ PICINT x1 [, x2, x3] Set up external PIC interrupt
¥ SDI x Shift in x bits
¥ SDO <string> Shift out string expression
Chapter 4 : TFBASIC Language Reference 49

¥ SDO x1, x2 Shift out x1 value using x2 bits
¥ TONE x1, x2 Send x2 cycles of square wave of period

x1 - continuous if x2=0

Low Power and
Time Commands

¥ HALT Stop in lowest power mode
¥ HYB (x) Dormant mode
¥ RATE Change SLEEP interval timing
¥ READRTC [v] Transfer hardware RTC time from PIC to

local RTC
¥ RTIME [v] Translate from softtware RTC or variable

time-in-seconds to '?' array
¥ SLEEP x Sleep till x*10 ms from last SLEEP
¥ SETRTC [v] Set the hardware RTC time in the PIC
¥ STIME [v] Write '?' array data to software RTC or

variable
50 TFX-11 UserÕs Guide

TFBASIC Quick Reference (alphabetical)
TFBASIC Quick Reference (alphabetical)

¥ ABS(x) Absolute value of x
¥ AINT(x) round ßoat down to integer
¥ ASFLT(x) Interpret x as ßoat
¥ ASM $...end Assemble HC11 code inline
¥ ASM<addr>...end Assemble HC11 code at <addr>
¥ ATN(x) Arctangent of x
¥ BAUDSET (x) Sets the main UART baud rate
¥ BAUDGET Gets the main UART baud rate
¥ CALL x1,x2[,v] Call x1 with registers = x2; returning in v
¥ CBREAK label Go to label if CTRL-C detected
¥ CBREAK Return CTRL-C handling to default
¥ CHAN(x) A-D conversion of channel x
¥ COS(x) Cosine of x
¥ COUNT <v> Start counting transitions on I/O 0 and

store in variable
¥ COUNT Stop counting transitions
¥ COUNT (x) Return number of cycles at I/O pin 0 in

time x
¥ DIM <label> (size)[,(size)] Dimension variable <label> to 'size'
¥ EXP(x) Return e raised to the x power
¥ FIX(x) Integer part of x as integer closer to zero
¥ FLOAT(x) Convert integer x to ßoat
¥ FOR v=x1 to x2 [STEP x3]... NEXT v an iterative loop
¥ FVAL(str$) Convert string to ßoat
¥ GOSUB label Execute subroutine at label
¥ GOTO label Go to label
¥ HALT Stop in lowest power mode
¥ HYB (x) Dormant low power (uA) mode
¥ IF x ... [ELSE...] ENDIF Execute 1st command block if x is true

[,else execute 2nd block]
¥ INPUT [s] v[,x][,#x][,\x][;] Prompt with s, load variable v (see full

description for complete arg list)
¥ INSTR([x,] str1$, str2$) returns a substrings position in a string
¥ INT(x) Integer part of x as integer
Chapter 4 : TFBASIC Language Reference 51

¥ IVAL(str$) String to integer
¥ LEN(str$) Return length of string
¥ LOG(x) Natural log of x
¥ LOG10(x) Common log of x
¥ MID(str$,x1,x2) return substring of str$
¥ ONERR label [,v] Go to label if error [, error in v]
¥ PCLR x1 [,x2 . . .] Clear speciÞed I/O pins to low state
¥ PEEK(addr) Byte at address 'addr'
¥ PERIOD (x1, x2) Time for x1 cycles of signal to pass with

x2 as timeout
¥ PICINT x [,y ,z] Set up external PIC interrupt
¥ PIN (x1 [,x2, . . .]) Value formed from speciÞed input pins
¥ POKE addr, value Store byte 'value' at address 'addr'
¥ PRINT ["s"][,#n][,x][,\x][;] {any mix}
¥ PSET x1 [,x2 . . .] Set speciÞed I/O pin to high state
¥ PTOG x1 [,x2 . . .] Toggle state of speciÞed I/O pin
¥ RATE Change SLEEP interval timing
¥ READRTC [v] Transfer hardware RTC time from PIC to

local RTC
¥ REPEAT ... UNTIL x Repeat command block until x is true
¥ RETURN Return from subroutine
¥ RTIME [v] Translate from softtware RTC or variable

time-in-seconds to '?' array
¥ SETRTC [v] Set the hardware RTC time in the PIC
¥ SIN(x) Sine of x
¥ SLEEP x Sleep till x*10 ms from last SLEEP
¥ SQR(x) Square root of x
¥ STIME [v] Write '?' array data to software RTC or

variable
¥ SDI x Shift in x bits
¥ SDO <string> Shift out string expression
¥ SDO x1, x2 Shift out x1 value using x2 bits
¥ STOP End program execution
¥ STORE [#n],x. Store x to EEPROM, using n bytes
¥ STR (["s"][,#n][,x][,\x]) Create string
¥ TAN(x) Tangent of x
52 TFX-11 UserÕs Guide

TFBASIC Quick Reference (alphabetical)
¥ TONE x1, x2 Send x2 cycles of square wave of period
x1 - continuous if x2=0

¥ UGET x1, x2, v, x3 Store data from software UART to string
¥ USEND baud, <string> Send string data out software UART
¥ TEMP (x) Thermistor conversion, degrees Cx100
¥ VARPTR (v) Address of variable v
¥ VGET (x) Return value of UEEPROM at address x
¥ VSTORE x, y Store y to UEEPROM address x
¥ WHILE x ... WEND Execute command block while x is true
¥ XMIT+, XMITÐ Enable, disable console output
Chapter 4 : TFBASIC Language Reference 53

TFBASIC Language Reference for the TFX-11
54 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
ABS absolute value

Syntax: ABS(<x>)

Description: ABS returns the absolute value of the expression in the parenthesis. The
function takes either an integer or a ßoating point argument and returns a
corresponding integer or ßoating point value.

Example: print abs(7)
print abs(-7)
print abs(7.0)
print abs(-7.0)

Output: 7
7
7.000000E0
7.000000E0

Cautions: Integer arguments outside the range of Tattletale integers (-2147483648
to 2147483647) will halt the program with a run time error.

Remarks: None.

See Also:
Chapter 4 : TFBASIC Language Reference 55

AINT round ßoat down to integer

Syntax: value = AINT(<x>)

Description: AINT returns the next integer value less than the argument. The value is
returned as a ßoat. The argument must be a ßoat. If it is an integer, it will
be converted to ßoat Þrst.

Example: inData! = 23.7
result! = aint(inData!)
print "aint of ",#.5F, inData!, " = ", result!
result = aint(ÐinData!)
print "aint of ",#.5F, ÐinData!, " = ", result!

Output: aint of 23.70000 = 23.00000
aint of Ð23.70000 = Ð24.00000

Cautions: Remember, this function does not simply strip off the fractional part of the
argument. Negative numbers return the next lower whole number!
56 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
ASFLT interpret argument as ßoat

Syntax: ASFLT(<x>)

Description: Integer and ßoat variables both take up four bytes of storage. There is
nothing in the storage format that allows the two to be distinguished from
each other. Therefore all variables are assumed to be integer unless
otherwise designated. ASFLT is used to tell TFBASIC to interpret data
retrieved from storage as a ßoating point value.

Example: FltVal! = 100.0 // create floating point value
vstore 10, FltVal! // store it in UEEPROM

print vget(10) // retrieve and print as integer
// (default)

print #F, asflt(vget(10)) // retrieve and print as float

stop

Output: 1120403456
100.00

Cautions: This function does not convert the data - it only tells TFBASIC how to
interpret it correctly, assuming it was stored as a ßoating point value.

Remarks: None.

See Also: VGET
Chapter 4 : TFBASIC Language Reference 57

ASM assemble to memory

Syntax: ASM $ or ASM <address>

<code>

...

...

END

Description: Assembly language can be written directly using ASM. HC11 instructions,
with some limitations (see the TFBASIC Assembly Language reference
for details), are supported in all addressing modes. Assembly starts when
it encounters the ASM command and stops when it encounters the END
command. This assembler allows the use of named labels and it can
access TFBASIC variables by name.

If the optional <address> is included, the code is assembled starting at
the speciÞed address. If <address> is replaced with the $ character,
assembly is done in line and automatically called when reached.

Labels: Labels can be used in the assembly code for ßow control and to deÞne
local variables. Labels MUST start in the Þrst column. Labels can be up to
32 characters long and must begin with a letter or an underscore (_). The
only valid characters in a label are upper and lower case characters, the
numbers and underscore. The label name can be terminated with a colon
(when the label is deÞned) but this is not necessary in the assembler.
These labels will not be accessible to TFBASIC except through the CALL
command and TFBASIC labels are not accessible to the assembly code
(although TFBASIC variables are).

Opcodes: The TFBASIC assembler recognizes most of the opcodes deÞned in the
Motorola literature. See the section "TFBASIC Assembly Language" for
details. Opcodes must have at least one character of whitespace (space
character or tab) in front of them on the line OR a label terminated with a
colon.

Inline assembly
code (ASM $)

This version allows you to install assembly language code that will be
executed in line with the TFBASIC code and has the form:
58 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
<TFBASIC code>
ASM $ (nothing else on this line, not even comments!)
<assembly code>
<assembly code>
.
<assembly code>
end
<TFBASIC CODE>

In the assembly section, everything after a semicolon and up to the end of
the line is considered a comment. The assembler does not recognize
TFBASIC comments. A more detailed explanation of this form of ASM is
given in the TFBASIC Assembly language section in this manual.

Notice that the Þrst form of the ASM command provides no way to
initialize the A, B or X registers before entering the assembly code
section. This can be done with the second form of ASM.

Assembly to an
address (ASM

<address>)

When the interpreter reaches this point in the program, it DOES NOT
EXECUTE THE ASSEMBLY CODE. Instead it loads the code to the
address speciÞed by the ASM command until it Þnds the 'end' statement:

<TFBASIC code>
ASM <address> (nothing else on this line, not even comments!)
<assembly code>
<assembly code>
<assembly code>
end
<TFBASIC CODE>

The A, B and X registers have a total of 32 bits. CALL initializes these on
launch using '<input parameters>', and returns their values at exit in the
'<optional output variable>' In both cases the registers are packed the
same way:

TxBASIC Variable / Expression

X register A register B register

31 0

0715 7 00
Chapter 4 : TFBASIC Language Reference 59

The assembler automatically appends an RTS to the end of your code. If
your assembly routine is launched by an interrupt you should end your
code with an RTI. The assembler will append an RTS to this but it will not
be executed.

A more detailed explanation of this form of ASM is given in the TFBASIC
Assembly language section earlier in the manual.

Radix: Assembly code allows more methods of deÞning the number base of
constants. You have these options IN THE ASSEMBLER ONLY in deÞning
a constant 19 decimal as:

¥ hexadecimal: 13H or &H13 or H'13 or $13 notice &H works as in
TFBASIC

¥ octal: 23O or 23Q or Q'23 or @23

¥ binary: 10011B or B'10011 or %10011

¥ decimal: 19 or 19D or D'19 - decimal is the default number base

Remarks: none

See Also: CALL and the "TFBASIC Assembly Language" manual section.
60 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
ATN arctangent

Syntax: value = ATN(<x>)

Description: ATN returns the angle (in degrees!) of the expression in the parenthesis.
The function takes a ßoating point argument and returns a ßoating point
value. An integer argument will be converted to ßoat Þrst.

Example: tangnt! = 1.0
degrees! = 0.0

degrees! = atn(tangnt!)
print ÒThe arctangent of Ò, #7.1F, tangnt!,Ò is Ò,#6.3F,degrees

Output: The arctangent of 1.0 is 45.000

Remarks: If the argument is +inf the result is 90.0

If the argument is -inf the result is -90.0

Cautions: DONÕT FORGET! The result is in degrees, not radians.

See Also: COS, SIN, TAN
Chapter 4 : TFBASIC Language Reference 61

BAUDSET Set the baud rate of the main UART

Syntax: Baudset (x)

Description: Sets the send and receive baud rate of the main UART to the selected
baud where x = baud. Baud is one of these: 300, 600, 1200, 2400, 4800,
9600, 19200, or 38400

Remarks: The default baud rate on reset is always initialized to19200.

Cautions: DONÕT FORGET! Changing the baud rate on the TFX-11 will NOT
automatically change the baud rate of TFTools. If the baud is set
incorrectly CTRL-C will no longer work to break the program.

See Also: BAUDGET
62 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
BAUDGET Get the baud rate of the main UART

Syntax: value = BAUDGET

Description: Baudget returns the value of the current baud rate of the main UART. The
function returns an integer. Value is one of the following bauds: 300, 600,
1200, 2400, 4800, 9600, 19200, or 38400

Remarks: The default baud rate on reset is always initialized to 19200.

Cautions: None

See Also: BAUDSET
Chapter 4 : TFBASIC Language Reference 63

CALL Call an assembly language subroutine

Syntax: CALL addr or <asm label>, regs [, var]

CALL <x1>,<x2> [,<v>]

Description: CALL executes a user loaded assembly language subroutine. The A, B,
and X registers are loaded with the value in the "regs" expression on entry
to the subroutine, and on exit, the optionally speciÞed variable returns
with the register contents. The packed format for register passing is
shown below:

Cautions: When you call an assembly language program, you are leaving the
warmth and safety of the TFBASIC programming environment. Obviously,
the power to access all of the registers, ports, and memory also affords a
path to catastrophic program crashes which may be very difÞcult to
diagnose.

Remarks: None.

See Also: ASM command and the "TFBASIC Assembly Language" section of the
manual.

TxBASIC Variable / Expression

X register A register B register

31 0

0715 7 00
64 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
CBREAK go to label on CTRL-C

Syntax: CBREAK [label]

Description: This command allows you to redirect the ßow of your program when it
receives a Ctrl-C character. Normally, the program terminates and returns
to the monitor. If you use the CBREAK command (followed by a label
name) at the beginning of your program, it will vector to the label when it
receives a Ctrl-C character. To return to the normal Ctrl-C action, use
CBREAK with no argument.

Example:
(indentation for

clarity only)

CBREAK getdata // goto 'getdata' when Ctrl-C hit
sleep 0

savedata:
for icount = 1 to 2000 // collect 2000 data pts

 store #2,chan(1)
 sleep 5
 next icount

goto savedata // reset datafile pointer to start
getdata:

print "ready to off-load"
stop

This code fragment shows one use for CBREAK. When a Ctrl-C
character is received, the program will vector to the code at label 'getdata'
and be at the # prompt awaiting the command for an XMODEM off-load.

Remarks: The Ctrl-C handler may be changed any number of times by executing
CBREAK with different arguments.

As with ONERR , CBREAK must be executed to be effective. For this
reason, you should put CBREAK near the beginning of the program.

Disable CTRL-C breaks by writing a zero byte to address 9C hex (POKE
HÕ9C,0). Re-enable breaks by writing a non-zero byte (POKE HÕ9C,1). A
count of CTRL-C characters will continue to be updated at address 9B
hex. To clear this before you re-enable break-outs use (POKE HÕ9B,0).

Cautions: Do not vector CBREAK to a label inside a subroutine. When a CTRL-C is
detected the program will act as if you did a GOTO into the subroutine. It
will not have a proper return address on the stack and will probably crash.
Chapter 4 : TFBASIC Language Reference 65

CHAN get result of A-D conversion

Syntax: value = CHAN(<x>)

Description: The CHAN command returns a digital value corresponding to ratio of the
voltage at the input channel (speciÞed by <x>) to the converter's
reference voltage input. The TFX has eleven 12-bit channels, channels 0
thru 10, and eight 8-bit channels, channels 11 thru 18, for a total of
nineteen analog input channels.

The analog inputs are designed to handle signals that range from 0 to the
converter's Vcc , typically +5V. The result of the conversion is left justiÞed
to produce a 16-bit result, regardless of the number of bits in the
converter. The result of the 12-bit converter is shifted left four bits
(multiplied by 16), and that of the 8-bit converter is shifted left eight bits
(x256). To to restore to there unjustiÞed form divide by their multipliers.

Example: // **** CHAN EXAMPLE *****
for counter = 1 to 10
value = chan(0)
print #016B, value,'B ',#04H, value,'H ',#1D,value
next counter

Input mapping: CHAN PIN CHAN PIN CHAN PIN CHAN PIN
0 A36 6 A42 11 A26 17 A31
1 A37 7 A43 12 A28 18 A33
2 A38 8 A44 13 A30
3 A39 9 A45 14 A32
4 A40 10 A46 15 A27
5 A41 16 A29

Remarks: All 19 channels are set to make ratiometric readings. channels 0-11 may
be modiÞed to make absolute measurements by the addition of an
external precision reference. See Using the onboard A/D converters

A/D Channels 11-18 may be reconÞgured to be digital inputs.

Cautions: Specifying channels less than 0 or greater than 18 will generate a run-
time error.

See Also: Section Using the Onboard A/D converters.
66 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
COS cosine

Syntax: value = COS(<x>)

Description: COS returns the cosine of the expression in the parenthesis. The
argument must be in degrees. The function takes a ßoating point
argument and returns a ßoating point value. An integer argument will be
converted to ßoat Þrst.

Example: degrees! = 0.0 // init arg (notice '!' means it's a float)
result! = 0.0 // just to force 'result' to be a float
for i = 1 to 6
 result = cos(degrees)
 print "The cosine of ",#5.1F,degrees," is ",#6.3F,result
 degrees = degrees + 72.0
next i

Output:
The cosine of 0.0 is 1.000
The cosine of 72.0 is 0.309
The cosine of 144.0 is Ð0.809
The cosine of 216.0 is Ð0.809
The cosine of 288.0 is 0.309
The cosine of 360.0 is 1.000

Remarks:

Cautions: DONÕT FORGET! The argument is in degrees, not radians.

See Also: SIN, TAN, ATN
Chapter 4 : TFBASIC Language Reference 67

COUNT count positive edges at I/O line 0

Syntax: cycles = COUNT (<x>) count function

or

COUNT <v> count command

Description: There are two versions of COUNT. The count function counts the number
of square wave cycles (positive edge is counted) appearing at I/O line 0
during a speciÞed time. Specify the duration <x> in hundredths of
seconds between 1 and 65535.

The count command works in the background incrementing variable <v>
at every positive edge on I/O line 0. COUNT <v> starts the background
counter and COUNT with no arguments disables the count interrupt. The
COUNT and PERIOD functions may not be used while the COUNT
command is running.

Examples:
Write this

program in
TFTools:

for N = 2000 to 6000 step 2000
print "Set up for ", N, " Hz, hit <cr>...";
input "" A; // input to dummy var to wait
print " reads ", count(100), " Hz"
next N

Output: Set up for 2000 Hz, hit <cr>... reads 1998 Hz
Set up for 4000 Hz, hit <cr>... reads 4000 Hz
Set up for 6000 Hz, hit <cr>... reads 6003 Hz

Write this
program in

TFTools:

count backCount // start background count, store in backCount
SLEEP 0
SLEEP 2
A=backCount // save current count, counting continues
SLEEP 100
B=backCount
PRINT BÐA // get second count, show difference
count // stop the background count
PRINT COUNT (100) // now count with function

Output: 1998
1997
68 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
Remarks: Triggering off the positive edge. In the same amount of time, the PERIOD
function will return a more accurate timing measurement. COUNT has
two advantages:

¥ It can be simpler to use.

¥ The number of transitions in 'duration' can be unknown.

Cautions: The maximum input frequency is about 30KHz. Rates higher than that
may return erroneous results. Durations greater than 65535 or less than
0 will generate run-time errors.

See Also: PERIOD.
Chapter 4 : TFBASIC Language Reference 69

DIM dimension array

Syntax: DIM <label> (size) [,(size)]

Description: This command is used to deÞne an integer or ßoating point array in
TFBASIC. Any legal variable name can be used as an array name as long
as its size is deÞned Þrst by using this command. All array members take
4-bytes - just like any TFBASIC variable - integer or ßoating point.

DIM allows you to 'dimension' an array. It must appear in the program
before any reference to members of the array. Attempts to access
members outside the array's boundaries (as in Array1(21) or Array1(-1) in
the example below) result in a 'HOW?' error.

Examples: // make Array1 have 20 elements numbered 0 to 19
DIM Array1(20)

// 2 floating point elements numbered 0 and 1
DIM Array2!(2)

// make Array3 have 10 elements numbered 0 to 9,
// each representing 5 elements numbered 0 to 4
DIM Array3(10,5)

Remarks: String arrays are not allowed in TFBASIC

All arrays in TFBASIC are 0 based. References to the members of the
Array1 deÞned above will look like Array1(0), Array1(1), Array1(2) ...
Array1(19). Notice that the index starts at 0 and ends at 19, giving the
same number of elements as the number in parentheses.

Cautions: The @() array and the ?() are predeÞned and therefore automatically
available. DO NOT attempt to DIM these again! The @ array dimension is
15232.

Once a name has been deÞned as an array, it cannot be used for a
variable name, and vice versa.

See Also: RTIME, STIME, READRTC, SETRTC; also Data storage options (@
array) and TFX Timekeeping (? array)
70 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
EXP raise e to a power

Syntax: value = EXP(<x>)

Description: EXP returns the base of the natural logarithms (e= 2.71828...) raised to
the power of the expression in the parentheses. The function takes a
ßoating point argument and returns a ßoating point value. An integer
argument will be converted to ßoat Þrst.

Example: build this program with your editor:

arg! = 0.125
result! = exp(arg!)
print Òe raised to Ò, #5.3F, arg!, Ò is Ò, #6.3F, result!

Output: e raised to 0.125 is 1.133

Remarks: To raise the value X to the power Y use the equation:

value = exp(Y*log(X))

For this to work correctly X must be greater than 0 and Y*log(X) must fall
into the valid range for exp arguments (see Cautions below).

Beware that these numbers lose accuracy as X or Y approach their limits.

Cautions: The range of input arguments is -87.33654 to 88.72283. Arguments
greater than 88.72283 will result in a ßoating point Overßow error,
(FPERR=2) with the result equal to +INF. Arguments less than -87.33654
will result in a ßoating point Underßow error, (FPERR=1) with the result
equal to 0.0. In both cases execution is not stopped.

See Also: LOG
Chapter 4 : TFBASIC Language Reference 71

FIX convert a ßoat to an integer

Syntax: value = FIX(<x>)

Description: FIX returns the next integer value closer to zero than the argument. The
function takes a ßoating point argument and returns an integer value. An
integer argument will be converted to ßoat Þrst and then converted back
to integer.

Example: build this program with your editor:

finp! = 5.329
result = fix(finp!)
print Òfix of Ò, #8.3f, inp, Ò = Ò, #D, result

result = fix(-finp!)
print Òfix of Ò, #8.3f, inp, Ò = Ò, #D, result

Output: fix of 5.329 = 5
fix of -5.329 = -5

Remarks: None

Cautions: Arguments outside the range of Tattletale integers will generate a runtime
error, halting the program.

See Also: FIX, INT
72 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
FLOAT convert integer to ßoat

Syntax: value = FLOAT(<x>)

Description: FLOAT returns the ßoating point representation of the argument. The
argument must be an integer.

Example: build this program with your editor:

inp = 123
result! = float(inp)
print "float of ", inp, " = ", #5.1F, result
inp = -77
result = float(inp)
print "float of ", inp, " = ", #5.1F, result
Output:
float of 123 = 123.0
float of -77 = -77.0

Cautions: Single precision ßoating point has a precision of 24 bits while integers
have a precision of 32 bits. Arguments outside the range of -16777215 to
16777215 will lose precision when converted to ßoating point. This Loss
of Precision error (FPERR = 8) does not stop program execution.

A non-integer argument will cause an error in the tokenizer.

See Also: FIX
Chapter 4 : TFBASIC Language Reference 73

FOR for - next loop

Syntax: FOR var = initial TO Þnal [STEP inc] [statements] NEXT var

FOR <v> = <x1> TO <x2> [STEP <x3>] [statements] NEXT <v>

Description: FOR loops provide one of four methods of looping available in TFBASIC.
Here "var" can be any TFBASIC integer variable, and "initial", "Þnal", and
"inc" are integer expressions. The variable "var" will Þrst be initialized to
the value of the expression "initial", and then the section of code between
the 'FOR' statement and the 'NEXT' statement will be repeated until "var"
is greater than the value of the expression "Þnal". After each pass, "var"
will be increased by the value of the expression "inc". If STEP and "inc"
are omitted, a step value of one is assumed. The limit ("Þnal") and step
("inc") are evaluated and stored each time the loop is tested for
continuation.

Examples:

Build this
program with

your editor:

//prints out the sequence 7,14,21,28,35,42,49
X = 7
FOR A = X TO X*X STEP X
PRINT #4, A;
NEXT A

Output when run
in TFTools:

7 14 21 28 35 42 49

Now build this
program with

your editor:

//This example demonstrates the use of "for - next"
//loops for formatted print-outs
FOR A = 1 TO 3
FOR B = 1 TO 5
PRINT #5, B;
NEXT B
PRINT
NEXT A

Output when run
in TFTools:

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
74 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
Remarks The test for continuation occurs at the beginning of the loop and the STEP
and LIMIT expressions are evaluated each time this test is done. This
allows you to use a GOTO to exit the loop. Also, because this structure
stores nothing on the stack, you can nest these loops as deeply as you
like and a GOTO can be used to exit any number of FOR loops. Use of
GOTO to exit a loop, while useful in certain circumstances, is NOT
generally considered good programming practice! If you feel the need to
use a GOTO to exit, chances are the whole construct could be more
effectively coded using a WHILE or REPEAT.

Cautions: STEP may be positive or negative, but do not use STEP 0!

At this time, only integer variables and expressions can be used in the
FOR loop speciÞcation.

See Also: WHILE, REPEAT, GOTO
Chapter 4 : TFBASIC Language Reference 75

FVAL convert string to ßoating point value

Syntax: FVAL(str$)

Description: FVAL takes a string representing a ßoating point value and converts it to
its numeric ßoating point variable equivalent.

Examples: astr$ = Ò1.234e1Ó
aflt! = FVAL(astr$)
print #5.2f, aflt!

Output: 12.34

Remarks: Valid characters are 0-9, +, -, ., E, and e. If the number contains other
characters it will terminate the conversion at the unrecognized character.
In the case of Ò12.3x5Ó the number returned will be 1.23

If the number evaluated is out of the ßoating point range it will generate
the appropriate FPERR but will not halt the program.

See Also: IVAL
76 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
GOSUB go to subroutine, saving return address

Syntax: GOSUB label

...

...

RETURN

Description: The GOSUB and RETURN commands allow you to use subroutines in
TFBASIC. The label speciÞer can be a line number or label. The RETURN
statement signals the end of the subroutine. GOSUBs can be nested at
least 20 deep.

Examples:

Build this
program with

your editor:
(indentation for

clarity only)

'***** GOSUB EXAMPLE 1 *****
 GOSUB SUB1

GOSUB SUB3
 STOP

SUB1:
 PRINT Ò1st SubroutineÓ
 GOSUB SUB2
 RETURN
SUB2:
 PRINT Ò2nd SubroutineÓ
 RETURN
SUB3:
 PRINT Òtoo much excitement - PLEASE STOP!Ó
 RETURN

Program Output: 1st Subroutine
2nd Subroutine
too much excitement - PLEASE STOP!

See Also: GOTO
Chapter 4 : TFBASIC Language Reference 77

GOTO go to label

Syntax: GOTO label

Description: GOTO causes an unconditional transfer of the program to the speciÞed
label.

Examples: '***** GOTO EXAMPLE 1 *****
REM simple unconditional jump

 GOTO SKIP
 PRINT "you won't see this"

SKIP: PRINT "you will see this"
 STOP

Remarks: GOTO can be used to exit any number of nested FOR, WHILE and
REPEAT loops. Good programming practice avoids using GOTO.

See Also: WHILE, REPEAT, FOR
78 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
HALT stop in lowest power mode

Syntax: HALT

Description: This command puts the Tattletale into its lowest power mode where it has
a typical power drain of <100 mA. It is up to the user to conÞgure all I/O
and external devices into their lowest power states. The only exits from
this mode are disconnecting and re-connecting the main battery, or
interrupting the process by commanding a LAUNCH (restart) from the
HOST via the parallel port.

Example: HALT

Remarks: None

Cautions: Before going into the dormant mode using 'HALT', all of the unused I/O
lines need to be converted to inputs and asserted according to their pull-
down or pull-up resistor conÞguration. Any hardware attached should
drop into its minimum power drain state when the lines are so asserted. In
order to make use of the low power HALT state you must provide
termination for all of the unused input lines or set them to outputs.

See Also: HYB, SLEEP, STOP
Chapter 4 : TFBASIC Language Reference 79

HYB very low power mode with wakeup

Syntax: HYB x

Description: This command puts the Tattletale into its lowest power mode where it has
a typical power drain of <100 mA. The parameter is the number of
seconds to remain in this state before being awakened by the supervisory
alarm in the PIC. The only other exits from this mode are disconnecting
and re-connecting the main battery, commanding a restart from the HOST
via the parallel port, a PICINT interrupt, or a high to low transition on the
IRQ line.

Example: HYB 0
for i=1 to 12
HYB 5
print ÒAwake from HYB with ? = Ò,?
next i

Remarks: In order to make use of the low power HYB state you must provide
termination for all of the unused lines.To make the most of the low power
capabilities of the HYB command all I/O and peripherals should be
conÞgured to their lowest power states. Unused I/O lines may be set to
outputs, or set to inputs if pull-ups or pull-downs are attached. Any power
switched device should be powered off.

Timekeeping. When the HC11 is in HYB its clock is shut down - when it
awakens from a HYB it automatically reads the PIC time value into the ?
variable.

Cautions: Care must be taken when setting a driven input to an output. If you are
sure the state will not change (for example if it is connected to a pullup or
pulldown resistor) during the HYB duration this is what may be done:

¥ Read the state of the input using PIN

¥ Depending on the state of the pin read use PSET or PCLR to set to
output to the correct state.

See Also: HALT, SLEEP, STOP, PICINT, INTSTATE read-only variable.
80 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
IF branch on result of comparison

Syntax: IF expression

...command...

[...more commands...]

[ELSE

...command...

...block 2...]

ENDIF

Description: IF allows you conditional control of your program. If the 'expression' is
true (does not evaluate to 0), command block 1 is executed otherwise, if
the ELSE block exists, command block 2 is executed. The ELSE block is
optional but the ENDIF is not. If one of the operands of the comparison is
a ßoating point value, the integer is treated like a ßoat and the operands
are compared as ßoating point values.

Examples:
(indentation for

clarity only)

 input Value
 if Value > 100 // execute block 1 if Value > 100
 print "The value Ò,Value,Ó is > 100 - not allowed!"

Value = 100 //end of command block 1
 else // otherwise, execute command block 2

print "The value is NOT greater than 100 - OK"
 endif //end of command block 2
 print ÒValue = Ò,Value

 Output, trial 1: 27
The value 27 is NOT greater than 100 - OK"
Value = 27

 Output, trial 2: 127
The value 127 is > 100 - not allowed!"
Value = 100

 Remarks: The result of a comparison using one of the relational operators is: 0 for
false, and 1 for true. Do not write programs depending on this, however.

See Also: Relational Operators
Chapter 4 : TFBASIC Language Reference 81

INPUT get value from console (buffered)

Syntax: INPUT ["prompt"] var[;]

INPUT ["<s1>"] <v1> [;] [,\x1] [,#x2] [,x3]

Description: INPUT allows you to assign a value to a variable entered through the
main UART from a terminal. You can use a string (in double quotes) as a
prompt. A default prompt of the variable name is used if you don't include
one. If you don't want a prompting string, use a zero-length string (quotes
with no intervening characters). Input will accept all variable types;
integer, ßoating point, and string. Floating point input can be in either Þxed
point or scientiÞc notation. The default terminator is a <CR>, and the
default time-out is none. By default up to 255 characters can be input. As
explained below, these defaults may be overridden by the optional
parameters each of which must be INTEGER expressions:

Additional
Switches:

\x1 Set terminating character. This byte value represents the terminating
character for the input stream. The special case \~ means no terminator,
useful with the [#x2] parameter (below) for binary transfers of Þxed length
with all values possible.

#x2 Set byte count. This expression Þxes the count of characters to read as
input before termination. If a speciÞc termination character is deÞned it
takes priority over the count. If the terminating character is present in the
input stream, it will terminate input before the total count is reached.

x3 Set time-out. If present, sets a non-zero time-out in increments of 0.01
seconds. If the time between incoming characters exceeds this value then
input is terminated and the program proceeds, whether or not there are
terminating characters or a terminating character count set. IMPORTANT
NOTE: If the value Ô0Õ (zero) is speciÞed for the time-out then INPUT
checks the buffer to see if a character is available; if there is a character it
returns with it, otherwise it returns immediately. Similar to the INKEY$
function in other BASICs.
82 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
; No <CR> <LF> on termination of input. By default INPUT sends out a
<CR> <LF> to the terminal when it exits, even if terminating on a byte
count or timeout.

Example: // check if a key was hit without waiting for one
input Òhit a key to stopÓ key$,#1,0;
if key$<> ÒÒ
 stop
endif

Example: // enter a floating point number
input floatVar!
input intVar
input "Type a floating point value-> "test!
input "Type an integer value-> "number
print
print #10.3F,floatVar,#10D,intVar,#12.6S,test,#10D,number

Program Output:
(typed

responses in
bold face)

floatVar: 9.351e3
intVar: 54321
Type a floating point value-> 134.55
Type an integer value-> 9999999999 <too large an integer!>

? 999999999

9351.000 54321 1.345500E2 999999999

Remarks: Entering a carriage return alone in response to an input command
assigns zero to the variable.

A trailing semicolon after the variable speciÞer causes the input command
to inhibit echoing the terminating carriage return.

Entering a Control-C during an input leaves the variable unchanged.

Cautions: The expression entered from the terminal is evaluated after each prompt.
If an integer value outside the range -2147483647 to 2147483647 is
input, a '?' is displayed to request corrected input.

A ßoating point input between -1.175494E-38 and +1.175494E-38
assigns zero to the variable and, if the input is not exactly zero, sets the
Chapter 4 : TFBASIC Language Reference 83

FPERR variable to indicate an underßow error. A value of +InÞnity is
assigned to the variable if the input is greater than 3.402823E+38. A
value of -InÞnity is assigned to the variable if the input is less than -
3.402823E+38. The value of FPERR will be updated to show an overßow
occurred for either inÞnite result. If a ßoating point input cannot be
evaluated, a '?' is displayed to request corrected input.

See Also: PRINT
84 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
INSTR returns a substrings position in a string

Syntax: INSTR([x,] str1$, str2$)

Description: Return the position in str1$ at which the substring str2$ is Þrst found.
Optionally start the search at position x in str1$. If the substring is not
found then the function returns 0.

Examples: astring$ = "This is a needle in a haystack"
search$ = "needle"
Offset = instr (astring, search)
if offset <> 0 print mid(astring, offset, len(search))
if offset = 0 print "String not found"

Remarks: This function does not return a string. It returns an integer offset to the
Þrst character of the substring that can be used on string STR1$.

See Also: MID , LEN
Chapter 4 : TFBASIC Language Reference 85

INT convert ßoat to integer

Syntax: value = INT(<x>)

Description: INT returns the next integer value less than the argument. The value is
returned as an integer. The argument must be a ßoat. If it is an integer, it
will be converted to ßoat Þrst.

Example: Build
this program with

your editor

inp! = 5.32987
print "int of ", #8.5F, inp, " = ", #D, int(inp)
print "int of ", #8.5F, -inp, " = ", #D, int(-inp)

Output: int of 5.32987 = 5
int of -5.32987 = -6

Cautions: Arguments outside the range of Tattletale integers (-2147483648 to
2147483647) will result in a run time error.

See Also: FIX, FLOAT.
86 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
IVAL convert numeric string to integer value

Syntax: IVAL(str$)

Description: IVAL takes a string representing an integer value and converts it to its
numeric integer variable equivalent.

Examples: astr$ = Ò1234Ó
anint= IVAL(astr$)
print #4, anint

Output: 1234

Remarks: Valid characters are 0-9, +, -. If the number contains other characters it
will terminate the conversion at the unrecognized character. In the case of
Ò123x567Ó the number returned will be 123.

See Also: FVAL
Chapter 4 : TFBASIC Language Reference 87

LEN return length of string variable

Syntax: LEN(str$)

Description: LEN takes the string argument and returns an integer value representing
the number of characters including terminating characters. The Maximum
length is 255 characters.

Examples: TestString = ÒThis is string oneÓ
print ÒLength of string one is Ò, len(TestString$Ó)
print ÒLength of string 2 is Ò, len(Òthis is string 2Ó)

Output: Length of string one is 18
Length of string 2 is 16

Remarks: none.

Cautions: none.

See Also: MID, INSTR
88 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
LOG natural logarithm

Syntax: value = LOG(<x>)

Description: LOG returns the natural logarithm of the expression in the parenthesis.
The function takes a ßoating point argument and returns a ßoating point
value. An integer argument will be converted to ßoat Þrst.

Example: build this program with your editor:

arg! = 0.125
result! = log(arg!)
print ÒNatural Log of Ò, #%.3F, arg!, Ò is Ò, #6.3F, result!

output: Natural Log of 0.125 is -2.079

Remarks: Arguments less than or equal to zero will generate a Not-a-Number (NaN)
ßoating point error (FPERR=4), but execution is not stopped.

See Also: EXP, LOG10
Chapter 4 : TFBASIC Language Reference 89

LOG10 common logarithm

Syntax: value = LOG10(<x>)

Description: LOG10 returns the common logarithm of the expression in the
parenthesis. The function takes a ßoating point argument and returns a
ßoating point value. An integer argument will be converted to ßoat Þrst.

Example: build this program with your editor:

arg! = 0.125
result! = log10(arg!)
print ÒCommon Log of Ò, #%.3F, arg!, Ò is Ò, #6.3F, result!

output: Common Log of 0.125 is -0.903

Remarks: Arguments less than or equal to zero will generate a Not-a-Number (NaN)
ßoating point error (FPERR=4), but execution is not stopped.

See Also: LOG, EXP
90 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
MID Return a substring of a string

Syntax: substr$ =MID(str$,x1,x2)

Description: MID returns a substring of the string argument passed to it, where x1 is
the offset to the start character and x2 is the number of chracters to read
within the string argument.

Example 1: SubStr$ = ÒÒ
MainStr$ = Òthis is a test Ò
print MainStr$
SubStr$ = mid(MainStr$,3,6)
print SubStr$
print SubStr$ + ÒreallyÓ
stop

output: this is a test
is is
is is really

Example 2: MyStr$ = Ò12345Ò
for index = 1 to len(MyStr$)-1
 print(mid(MyStr$,index,3)
next index
stop

output: 123
234
345
45
5

Remarks: The Þrst character in a string is referenced as 1, not 0. If you use) it will
be converted to one. Negative numbers for x1 cause MID to terminate. If
the nu8mber of charaters requested goes past the end of the string, then
the string returned will automatically terminate at the end.

Cautions: None:

See Also: LEN, INSTR
Chapter 4 : TFBASIC Language Reference 91

ONERR go to label on error

Syntax: ONERR [label [,var]]

Description: ONERR directs the Tattletale to jump to the speciÞed label if a run-time
error occurs instead of printing an error message. Errors are normally
ßagged as they occur with a 'HOW' comment. If an ONERR line is
encountered during execution, the error printout will be skipped and
execution will continue at the 'label'. This allows emergency shutdown or
recovery from a program error encountered in the Þeld. To return to the
normal error action, use ONERR with no argument.

When the ONERR branch is made, the program loses all information
about previous GOSUBs.

Example: build
this program with

your editor
(indentation for

clarity only)

ONERR MID
 X=1
LOOP1: X=X*2

GOTO LOOP1 // find something too big
MID: A=X

ONERR LOOP2
LOOP2: A=A/2
 IF A=0 PRINT "MAX INTEGER = ",X

STOP
 X=X+A

GOTO LOOP2

ProgramÕs
Output:

MAX INTEGER = 2147483647

What & Where?: In addition to the form shown above, TFBASIC allows an optional variable
to be speciÞed that will receive the error code number and the address of
the token that failed. This value can be examined in the error handling
routine to decide what action to take. Be aware that all information on
previous GOSUB return addresses is lost. In addition, TFBASIC resets
the token parameter stack.

The token address for the error is stored in the least signiÞcant two bytes
of the variable, and the ÔHOWÕ error number in the most signiÞcant two
bytes. Use the divide and mod operators to separate out these parts. The
92 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
token address can be used to look into the *.LST Þle to get an idea of
where the error occurred.

Example: build
this program with

your editor
(indentation for

clarity only)

ONERR TROUBLE,E //goto TROUBLE if error, error # in E
 A = 2 // initialize variable
 FOR I = 0 TO 99 //execute loop up to 100 times
 A = A * 2 // make A larger, possible error source
 NEXT I // loop back

TRYTHIS:
 B = TEMP(1000000)// another possible error source
 STOP // won't get here, second err causes exit

TROUBLE:
 PRINT "Error #", E/65536," found";
 PRINT " at token address ", #H, E % 65536, "H"
 IF E/65536=7
 PRINT "Multiply out of range"
 GOTO TRYTHIS
 ENDIF
 IF E/65536=14 PRINT "TEMP argument out of range"
 STOP

ProgramÕs
Output:

Error #7 found at token address 28H
Multiply out of range
Error #14 found at token address 35H
TEMP argument out of range

Remarks: As with CBREAK , ONERR must be executed to be effective. For this
reason, you should put ONERR at or near the beginning of the program.
The error handler may be changed any number of times by executing
ONERR with different arguments.

Cautions: Do not vector ONERR to a label inside a subroutine. When a error is
detected the program will act as if you did a GOTO into the subroutine. It
will not have a proper return address on the stack and will probably crash.

See Also:
Chapter 4 : TFBASIC Language Reference 93

PCLR set I/O pin low

Syntax: PCLR pin [,pin...]

PCLR <x1> [,<x2>.]

Description: PCLR Þrst converts the speciÞed pins to outputs, and then clears these
pins to a logic low (0 volts). The following table maps the argument value
to the I/O pin.

Examples: // use two ways to clear I/O lines

FOR A=0 TO 5
PCLR A
NEXT A

PCLR 0,1,2,3,4,5

Remarks: In TFBASIC, when multiple pins are speciÞed in a single command, the
changes may not take place simultaneously if the pins selected are from
different ports.

Cautions: Pins 8-15 are INPUTS ONLY! PTOG, PSET and PCLR will generate a
HOW? error when used with these pins.

See Also: PSET, PTOG, PIN.

PIN
 I/O
PIN PIN

 I/O
PIN

0 A18 16 B20

1 A19 17 B19

2 A20 18 B18

3 A21 19 B17

4 A22 20 B16

5 A23 21 B15

6 A24 22 B14

7 A25 23 B13
94 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
PEEK read memory byte

Syntax: PEEK (<addr>)

PEEK (<expr>)

Description: This function returns the value of the byte located at the address <a> in
parentheses. The <a> can be any expression that evaluates to a valid
address in BANK 0.

Example:
(indentation for

clarity only)

 print peek ($H74C0)
 A = peek (&H112)

startprog:
 print "square of values from 0 to 9"
 for a = 0 to 9
 b = a * a
 print #5, a, b
 next a
 print "last b value bytes: ";
 print #02H, peek(varptr(b)),' ';
 print #02H, peek(varptr(b)+1),' ';
 print #02H, peek(varptr(b)+2),' ';
 print #02H, peek(varptr(b)+3)
 print "program starts at ";
 print #04H, labptr(start_prog)
 print "program ends at ", #04H, labptr(end_prog)
endprog:

Remarks: This function can return the value of any address in the Þrst 64K address
space including the processor registers.

See Also: POKE
Chapter 4 : TFBASIC Language Reference 95

PERIOD measure period of signal

Syntax: PERIOD (count, timeout)

PERIOD (<x1>,<x2>)

Description: PERIOD measures the amount of time it takes for 'count' cycles of a
signal to pass. The input signal must be connected to I/O line 0 and is
measured in units of 1/2.4576mSec (about 0.40690mSec). If 'timeout' *
0.01 seconds passes before the prescribed number of cycles transpires,
the returned value will be zero. This keeps the Tattletale from locking up
forever if no signal is at the input. Period may return incorrect values for
input frequencies higher than 30KHz.

Example:
(indentation for

clarity only)

start: print "COUNT gives ",count(100)," Hz"
X = PERIOD (100,100)

 if X=0 print "PERIOD gives 0 Hz"
 goto finish

endif
print "PERIOD gives ",122880000/X," Hz"

finish: stop

Output COUNT gives 4997 Hz
PERIOD gives 4996 Hz

Cautions: Be careful when dividing anything by PERIOD, since PERIOD can return
a zero which would cause a 'HOW?' error.

The maximum value for the count and timeout arguments is 65535.

Remarks: Argument maximum is 65535.

See Also: COUNT
96 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
PICINT external interrupt for wakeup

Syntax: PICINT x [,y ,z]

Description: This instruction sets up I/O line 16 as an edge-sensitive interrupt. This
interrupt originates in the PIC. This instruction sets I/O 16 to input, sets
the edge, clears any pending interrupts and then sets the PICÕs INTE bit.
When an interrupt is received it will awaken the PIC (if asleep) which in
turn will signal the HC11 via the XIRQ line. The PIC will clear the interrupt
ßag and the interrupt enable ßag, so the interrupt will remain disabled until
the PIC receives another enable instruction. From TFBASIC this may be
used as an asynchronous awakening from HYB. If connected to the UDI
pin it will awaken the TFX-11 from sleep on receipt of a serial character.

arguments:

¥ x If 0, interrupt will be disabled. If 1, interrupt is enabled.

¥ y If 0, interrupt is on falling edge (default). If 1, on rising edge.

¥ z Address of assembly routine called when interrupt is detected.

Examples: intcount = 0
savecount = 0
cbreak clean
print "Count interrupts on I/O Pin 16"
print "Hit Ctrl-C to exit"

asm &hb000
ldd intcount+2// increment the counter
addd #1
std intcount+2
rts // notice RTS, code internal to TFBASIC does RTI
end

picint 1,0,&hb000// enable PIC interrupts on negative-going edge

sleep 0
loop:
if intcount <> savecount

print "intcount = ",intcount
savecount = intcount
picint 1,0,&hb000// re-enable PIC interrupt

endif
Chapter 4 : TFBASIC Language Reference 97

sleep 10
goto loop
stop

clean:
picint 0// disable PIC interrupt
print "PIC interrupts disabled"
stop

See Also: INTSTATE read only variable, HYB
98 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
PIN read state of I/O pin

Syntax: value = PIN (pin [,pin.])

value = PIN (<x1> [,<x2>.])

Description: For each pin that is speciÞed by the PIN instruction, the data direction
control bit for that pin is set to input. The value that is formed from the
states of the speciÞed pins is then returned . If the voltage at a particular
pin is above 2.0 volts, the PIN instruction interprets the input as a 1; if it is
below 0.7 volts, it is interpreted as a 0. Intermediate values will return
unpredictable (indeterminate) results.

This command returns a value of all listed pins in a set order, not
depending on the order they are listed in the command arguments.

Comments: If a pin is not listed in the commandÕs argument list its corresponding
value is always returned as 0, whether or not it is set.

Remarks: In TFBASIC, when multiple pins are speciÞed in a single command, the
pins are handled in sequence as three blocks. First the pins in the block 0
- 7, then the pins in the block 8 - 15, and Þnally the pins 16 - 23.

Cautions: I/O pins 8-15 do not correspond sequentially to their proto board pin
numbers.

See Also: PSET, PCLR, PTOG.

I/O PIN WEIGHT I/O PIN WEIGHT I/O PIN WEIGHT

0 A18 1 8 A26 256 16 B20 65536

1 A19 2 9 A28 512 17 B19 131072

2 A20 4 10 A30 1024 18 B18 262144

3 A21 8 11 A32 2048 19 B17 524288

4 A22 16 12 A27 4096 20 B16 1048576

5 A23 32 13 A29 8192 21 B15 2097152

6 A24 64 14 A31 16384 22 B14 4194304

7 A25 128 15 A33 32768 23 B13 8388608
Chapter 4 : TFBASIC Language Reference 99

1

POKE place byte into RAM

Syntax: POKE <addr>,<value>

POKE <expr1>,<expr2>

Description: This command stores the least signiÞcant byte of the value of the
expression <expr2> at the address that results from the evaluation of the
expression <expr1>.

Examples: poke &H74C0,123

b=123456789 // write 123456789 to locations

for a=&H74C3 to &H74C0 step -1 // 112H -115H, msb first
 poke a,b%256
 b=b/256
next a

Remarks: This modiÞes memory directly and should be used with care. Its use is
restricted to the 64K bank of program memory.

See Also: PEEK, VARPTR
00 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
PRINT print to console

Syntax: PRINT ["string"][,#format][,value][,\ ascii val][;]

PRINT ["<s>"][,#n][,<x>][,\ <x>][;] {any order or mix}

Description: PRINT can be used to write values, strings, individual characters, and
blocks of the dataÞle to the hardware UART. The formats, strings, values,
characters, and dataÞle blocks must be separated with commas. A trailing
semicolon will suppress the trailing carriage return line-feed that is
normally sent at the end of a PRINT.

Strings: A string is a set of characters bracketed by either single or double quotes.
Strings can have any length, including zero.

String examples print "HELLO"
print "This is a test"

Values: Values are expressions that are evaluated at the time of the execution of
the PRINT statement. The default format for expressions is one character.
All the digits of a number will be printed even if the format speciÞes too
small a space.

Value examples print "A=", A
print "A+5=", A+5

Using PRINT
with Formatting:

Formats are a '#' followed by a numeric value, optionally followed by a
type speciÞer ('D', 'H', 'Q', 'B', 'F', 'S'). The numeric value speciÞes the
minimum number of spaces a value is allowed to take when printed.
Values that take less than the speciÞed number of spaces will be Þlled out
(to the left of the value) with spaces unless the Þrst character following the
'#' is a '0', in which case the Þll character is a zero. All digits of the value
will be printed, regardless of the format. Decimal is assumed unless one
of the type sufÞxes ('D' = decimal [the default for integers]), 'H' =
hexadecimal, 'Q' = octal, 'B' = binary, 'F' = Þxed point ßoat, 'S' = scientiÞc
ßoat [the default for ßoating point]) is speciÞed.
Chapter 4 : TFBASIC Language Reference 101

Formatted
examples:

print #10H,-1,#14Q,-1,#35B,-1
 FFFFFFFF 37777777777 11111111111111111111111111111111

print #010H,-1,#014Q,-1,#035B,-1
00FFFFFFFF 00037777777777 00011111111111111111111111111111111

print #10.2F, 12.345
 12.34

print #10F, 12.345
 12.340001

print #7.2S, 12.345
 1.23E1

print #.5F, 12.345
12.34500

print #0S, 12.345
1.234500E1

For ßoating point numbers, two numbers can be used to separately
specify the minimum width and the number of decimal places of precision.
Both are optional with the default digits of precision being 6.

Character codes: Individual characters can be sent by preceding their ASCII value with a
backslash. You can also specify an expression after the backslash. The
least signiÞcant byte stored in the variable will be sent.

Character code
example

// This example sends out a 'bell' control character
print "Strike the bell, second mate!",\7, "Let us go below!"
// Next example prints letters 'a' through 'z' then CR/LF
for i = 97 to 122
 print \i;
 next i
print

Trailing
semicolon:

A trailing semicolon causes TFBASIC to omit the CR, LF that is normally
sent at the end of a print statement.

Trailing
semicolon

example:

print Òthis is Ò; // these two lines produce
print Òa testÓ // identical output

print Òthis is a testÓ // to this one line
102 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
Remarks: To send a CR without a LF at the end of a line use \13 to send the
carriage return, and a semicolon to suppress the normal CR LF. This is
useful for updating a value on the display without generating a new line. It
will continuously write over the value on the same line.

Cautions: The PRINT command's output is buffered. All print format declarations
require a numeric value between the # sign and the type speciÞers.

See Also: STORE
Chapter 4 : TFBASIC Language Reference 103

PSET set I/O line high

Syntax: PSET pin [,pin, pin,...]

PSET <x1> [,<x2>.]

Description: This command sets the data direction register for the speciÞed pins to
outputs, and then sets the pins to a logic high (+5 volts).

Example Code: // example 1
FOR A=0 TO 7
PSET A
NEXT A

// example 2
PSET 0,1,2,3,4,5,6,7

Either one of these will set all of the output lines high. This is useful in an
application where the I/O lines that are not used do not have pull-ups or
pull-downs. Setting them to outputs keeps them from being ßoating inputs
that can draw extra current needlessly.

Remarks: See PCLR for I/O pin mapping.

In TFBASIC, when multiple pins are speciÞed in a single command, the
pins are handled individually and in sequence as three blocks. First the
pins in the block 0 - 7, then the pins in the block 8 - 15, and Þnally the pins
in the block 16 and above.

Cautions: Pins 8-15 are INPUTS ONLY! PTOG, PSET and PCLR will generate a
HOW? error when used with these pins.

See Also: PCLR, PTOG, PIN
104 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
PTOG toggle I/O line to opposite state

Syntax: PTOG pin [,pin, pin,...]

PTOG <x1> [,<x2>.]

Description: The PTOG command sets the data direction register for the speciÞed pins
to outputs, and then changes the pins to the opposite state they held
before this command was executed.

Example code: FOR A=0 TO 13
PTOG 1
NEXT A

This example will cause pin D1 to change state 14 times ending up in its
original state.

Remarks: In TFBASIC, when multiple pins are speciÞed in a single command, the
pins are handled individually and in sequence as three blocks. First the
pins in the block 0 - 7, then the pins in the block 8 - 15, and Þnally the pins
in the block 16 and above.

Cautions: Pins 8-15 are INPUTS ONLY! PTOG, PSET and PCLR will generate a
HOW? error when used with these pins.

See Also: PCLR, PSET, PIN.
Chapter 4 : TFBASIC Language Reference 105

RATE Change sleep interval

Syntax: RATE <x>

Description: This command assigns a new value for the sleep interval duration. By
default a SLEEP 1 equals 10ms., so a SLEEP 100 gives a 1 second
interval. This is equivalent to RATE 1. Other acceptable values for RATE
are:

Example code: for index = 1 to 5
 print ? // print seconds count
 sleep 100 // sleep for one second
next index
RATE 2 // twice as many interrupts per second
for index = 1 to 10
 print ? // print seconds count
 sleep 100 // sleep for one-half second
next index
RATE 1 // return to default RATE

RATE
Sleep

ticks/sec
interval

(ms.)

1 100 10.0

2 200 5.0

3 300 3.33...

4 400 2.5

6 600 1.66...

8 800 1.25

12 1200 .833...

16 1600 .625

24 2400 .4166...

32 3200 .3125

48 4800 .20833...

64 6400 .15625

96 9600 .104166...

128 12800 .078125

192 19200 .0520833...

LATCH
106 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
Remarks: ? variable timekeeping update rate is NOT affected by different RATES,
but is always updated 100 times a second. Actual update time may be
delayed slightly when using higher RATE values.

Cautions: Using values for RATE not in the table will cause a run time error. Using a
high RATE may cause sleep overruns where there were none before. Use
this command with care.

See Also: SLEEP and STPWCH example program in Chapter 5 section assembly
language subroutines.
Chapter 4 : TFBASIC Language Reference 107

READRTC load PIC RTC time to local variable

Syntax: READRTC

or

READRTC <v>

Description: READRTC takes the 4 bytes from the PIC RTC in seconds and copies it
directly into the Ô?Õ variable, or optionally, into the variable provided as an
argument. This time is counted in seconds starting at New Years Day
1980.

Example code: input "Set time (Y/N)?"answer$,#1

if answer <> "Y" & answer <> "y"
 goto start
endif

input "year: "?(5)
input "month: "?(4)
input "day: "?(3)
input "hour: "?(2)
input "minute: "?(1)
input "second: "?(0)

print // print out time
print #02,?(5),"/",?(4),"/",?(3)," ";
print #02,?(2),":",?(1),":",?(0)
print

stime // convert ?(array) to ? variable
SetRTC // also copy this time to PIC

start: ReadRTC // get back time stored in the PIC
sleep 0

loop:
rtime // convert ? variable to real time
print #02,?(5),"/",?(4),"/",?(3)," ";
print #02,?(2),":",?(1),":",?(0),\13;
sleep 100
goto loop
108 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
Output: Set time (Y/N)?y
year: 99
month: 12
day: 31
hour: 23
minute: 59
second: 45

99/12/31 23:59:45

1999/12/31 23:59:45
1999/12/31 23:59:46
1999/12/31 23:59:47
1999/12/31 23:59:48
1999/12/31 23:59:49
1999/12/31 23:59:50
1999/12/31 23:59:51
1999/12/31 23:59:52
1999/12/31 23:59:53
1999/12/31 23:59:54
1999/12/31 23:59:55
1999/12/31 23:59:56
1999/12/31 23:59:57
1999/12/31 23:59:58
1999/12/31 23:59:59
2000/01/01 00:00:00
2000/01/01 00:00:01
2000/01/01 00:00:02
2000/01/01 00:00:03
2000/01/01 00:00:04

^C

#

Remarks:

 Cautions:

See Also: RTIME, STIME, SETRTC, and section ÒTFX TimekeepingÓ
Chapter 4 : TFBASIC Language Reference 109

REPEAT execute loop until expression true

Syntax: REPEAT

...commands...

...to be executed...

UNTIL expression

Description: REPEAT loops provide one of four methods of looping available in
TFBASIC. The code between the REPEAT and UNTIL commands will be
executed until 'expression' becomes true. Unlike the FOR and WHILE
loops, the testing of 'expression' takes place after the loop has executed
so a REPEAT loop will always run at least once. Because this structure
stores nothing on the stack, these loops can nest as deeply as you like.
GOTO will exit any number of nested REPEAT loops and will not cause
stack problems.

Examples:
(indentation for

clarity only)

// example 1 - force input to be 0 or 1 and count mistakes
begin:
tries = 0
print "Input 0 to exit or 1 to continue"

repeat
 input "Continue? "goAgain
 tries = tries + 1
until goAgain = 0

// goAgain = 1 // remove comment slashes to modify behavior
print "that took you ",tries," tries"

if goAgain = 0
 print "Program terminating"
 gosub CleanUp
 stop
else
 goto begin
endif
110 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
// example 2 - force input between 0 and 100, quit on 99
// count number out of range and quit after 10

 repeat
 tries = 0
 repeat
 input newNumber
 tries = tries + 1
 if tries >= 10 goto give_up
 until newNumber < 100 & newNumber > 0
 until newNumber = 99

 print "99 was input. Time to stop."
 stop

give_up:
 print "Ten numbers out of range - you are finished!"
 stop

Remarks: None

See Also: FOR, GOTO, WHILE
Chapter 4 : TFBASIC Language Reference 111

RETURN return from subroutine

Syntax: RETURN

Description: RETURN is used with GOSUB to signal that it is time to go back to the
calling routine.

 Cautions: GOSUB stores the return address on the stack and RETURN uses it to
know where to jump back to. If no GOSUB has placed a valid return
address on the stack then executing a RETURN without a corresponding
GOSUB will take whatever is on the stack and use it as the return
address, most likely sending the program off into space. BE SURE that
there is no path to a RETURN that is not deliberate. This type of error is
usually associated with indiscriminate use of GOTOs.

See Also: GOSUB
112 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
RTIME Read local software real-time-clock

Syntax: RTIME

or

RTIME <v>

Description: RTIME translates the '?' variable (seconds) to the six elements of the '?()'
array. Time is counted in 1/100 ths of a second starting at New Years Day
1980. This command, with STIME, allows translation between the all
seconds format and the year, month, day, hour, minute, second format.
RTIME <v> translates the variable v, which represents seconds only (no
subseconds), to the members of the ? array.

?(0) gets the second (0 to 59)

?(1) gets the minute (0 to 59)

?(2) gets the hour (0 to 23)

?(3) gets the day (1 to 31)

?(4) gets the month (1 to 12)

?(5) gets the year (1980 to 2047).

?(6) gets the number of 0.01 sec ticks (0-99).

Example code:
Build this

program with
your editor

(indentation for
clarity only)

 sleep 0
loop: rtime
 print 'THE TIME IS ',?(2),':',?(1),':',?(0);
 print ' on ',?(4),'/',?(3),'/',?(5)
 sleep 100
 goto loop

Output: THE TIME IS 16:24:18 on 5/8/1996
THE TIME IS 16:24:19 on 5/8/1996
THE TIME IS 16:24:20 on 5/8/1996

Remarks: Dates beyond 2047 are out of range. Leap years are handled properly.

Cautions: The ? array is predeÞned, do not initialize with DIM!

See Also: STIME, SETRTC, READRTC, and section ÒTFX TimekeepingÓ
Chapter 4 : TFBASIC Language Reference 113

SDI shift register input

Syntax: value = SDI (bits)

or

value = SDI (<x>)

Description: SDI is designed to bring in a serial data stream from a shift register and
return with a value formed from this data stream. SDI Þrst applies a
negative going pulse to I/O line 5. This pulse is used to latch data into the
shift registers. SDI then shifts in the number of bits of data speciÞed by
the value in parentheses, using I/O line 8 as the data input line and I/O
line 4 as a clock. The returned value is made from the binary data
received (msb Þrst). Clocking occurs on the positive edge. This works
nicely with a 74HC165 or 74HC166 shift register.

The command A = SDI (N) will cause N bits of data to be clocked in to
form an N-bit two's complement number. If less than 32 bits are shifted in,
the unspeciÞed MSB's are zeros. The last bit shifted in has a weight of 1,
with the preceding bits given weights of 2, 4, 8, 16, etc. If 32 bits are
shifted in, the Þrst bit will be the sign bit of the resulting two's complement
number. The Þgure below shows 17 bits shifted in to form the number
134EDH, which is 79085 decimal.

Example of 17 Bits
being Shifted

I/O 4

I/O 8

I/O 5

DATA

CLOCK
114 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
This sequence works well with both 74HC165 and 74HC166 shift
registers. The Þgure below uses two 74HC165s to shift in 16 inputs. By
cascading two more shift registers, 32 inputs can be read at once.

74HC165 and
74HC166 Shift

Registers

Remarks: I/O lines 4, 5 and 8 will normally be connected to a shift register such as a
74HC165 or 74HC166 as shown above.

Since the most signiÞcant bit of the shift register attached to I/O line 8 is
always available, an initial 'clock' is not needed. Thus, if you request N
bits, there will be N-1 'clock' pulses on I/O line 4.

Cautions: Run time errors will occur if the value in theparentheses is not in the
range 1 to 32.

See Also: SDO

I/O 8

I/O 4

I/O 5
Chapter 4 : TFBASIC Language Reference 115

SDO shift register output

Syntax: SDO value, bits

SDO <x1>,<x2>

or

SDO <string>

Description: Form 1:SDO is designed to send a serial data stream made up of the
least signiÞcant bits of the value. The bits are sent out I/O line 7, using
the positive edge of I/O line 4 as a clock. After the last shift pulse, I/O line
6 is used as a positive-going latch pulse. This works nicely with a
74HC595 shift register.

Form 2:The second form of SDO sends characters out the serial line
(eight bits and then latch). Timing Lines used by the SDO Command

The Þgure above shows the timing of the three lines used in the SDO
command. The circuit below shows one use of SDO. Here two 74HC595
shift registers are cascaded to form 16 outputs. By adding two more
74HC595's, a total of 32 output lines can be changed with a single SDO
command.

NOTE: These format speciÞers, #D, #H, #B, #F, #S or #Q are considered
ambiguous. Do D or H signify the radix (decimal or hexidecimal) or a
variable Þeld width? You can use variables for Þeld width but not with
those 12 names (upper or lower case). To get the radix form, use #1D,
#1H etc.

DATA (I/O 7)

CLOCK (I/O 4)

LATCH (I/O 6)
116 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
SDO Command
Timing Lines

Remarks: I/O lines 4, 6 and 7 will normally be connected to a shift register such as a
74HC595 as shown above.

Since the bit on I/O line 7 is always available to be stored in the least
signiÞcant bit of the shift register, a Þnal 'clock' is not needed. Thus, if you
request N bits, there will be N-1 'clock' pulses on I/O line 4.

Cautions: In form 1, the bit's value must be in the range 1 to 32.

See also: SDI and STR

I/O 7

I/O 4

I/O 6
Chapter 4 : TFBASIC Language Reference 117

SETRTC transfer local time in seconds to PIC RTC

Syntax: SETRTC

or

SETRTC <v>

Description: SETRTC takes the four byte Ô?Õ variable time in seconds and uses it to set
the time in the PIC, or optionally takes the time in seconds from the
variable v if present. Time is counted in seconds starting at New Years
Day 1980.

Example code: See READRTC

See Also: RTIME, STIME, READRTC, and section ÒTFX TimekeepingÓ
118 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
SIN Sine

Syntax: value = SIN(<x>)

Description: SIN returns the sine of the expression in the parenthesis. The argument
must be in degrees. The function takes a ßoating point argument and
returns a ßoating point value. An integer argument will be converted to
ßoat Þrst degrees! = 0.0 // init arg (notice '!' means it's a ßoat)

Example: result! = 0.0 // just to force 'result' to be a float
for i = 1 to 6
 result = sin(degrees)
 print "The sine of ",#5.1F,degrees," is ",#6.3F,result
 degrees = degrees + 72.0
next i

Output: The sine of 0.0 is 0.000
The sine of 72.0 is 0.951
The sine of 144.0 is 0.588
The sine of 216.0 is Ð0.588
The sine of 288.0 is Ð0.951
The sine of 360.0 is 0.000

Cautions: DONÕT FORGET! The argument is in degrees, not radians.

See Also: COS, TAN, ATN
Chapter 4 : TFBASIC Language Reference 119

SLEEP low power wait over a precise time
interval

Syntax: SLEEP tics

SLEEP <x>

Description: SLEEP places the Tattletale in a semi-dormant mode until the number of
1/100-second intervals speciÞed by the tics argument has expired. It does
this by comparing the speciÞed 15-bit tics value with the 16-bit value in a
free-running counter, called the interval counter, that is incremented every
1/100 of a second. When a match is found, it clears the interval counter
and completes the instruction. In this manner, the SLEEP command
actually sets intervals between SLEEP commands, and accordingly, is
independent of other timing delays. If the comparison shows that the
interval counter has a larger value than the tics value speciÞed by the
command, the warning '*' will be printed to the primary UART. (At the
same time the lsb of the OVRSLP system variable is set. You may check
this ßag by using the command PEEK(&H9E) and using POKE &H9E,0
will clear it). If 'tics' = 0, no check is made, but the interval counter is reset
to zero.

The Þgure above shows the timing for a SLEEP 100 command that was
separated from the previous SLEEP command by commands that took
about 65 mS to execute. If the intervening commands had taken more
than a second, the current drain would not have dropped, the interval
counter would have been reset to zero and a '*' would have been sent out
the hardware UART.

See Also: HYB, RATE

C
U

R
R

E
N

T
1
0
 m

S
IN

T
E

R
R

U
P

T
IN

T
E

R
N

A
L

C
O

U
N

T
E

R

1 5 6 7 8 97 98 99 09
120 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
SQR square root

Syntax: value = SQR(<x>)

Description: SQR returns the square root of the expression in parentheses. This
function takes a ßoating point argument and returns a ßoating point result.
If the argument is an integer, it will be converted to ßoat Þrst.

Examples: build
this program with

your editor
(indentation for

clarity only)

start:
 input "SQR("argument!;
 print ") = ",#F,sqr(argument)
 goto start

run it in TFTools SQR(1) = 1.000000
SQR(2) = 1.414214
SQR(4) = 2.000000
SQR(100) = 10.000000
SQR(1000) = 31.622778
SQR(1000000) = 1000.000000
SQR(123.4) = 11.108556
SQR(-1) = NaN ("Not-a-Number" because sqr(-1) is imaginary)
SQR(16) = 4.000000 (Note the NaN error didn't stop program)

Remarks: Taking the square root of a negative number returns a value of Not-a-
Number (speciÞed by the IEEE 754 ßoating point speciÞcation). This will
not stop program execution. It sets the Not-a-Number bit in the ßoating
point error variable FPERR.

See Also: EXP
Chapter 4 : TFBASIC Language Reference 121

STIME set local software real-time-clock

Syntax: STIME

or

STIME <v>

Description: STIME translates the 6 element '?()' array to the '?' variable. Time is
counted in 1/100ths of a second starting at New Years Day 1980. This
command, with RTIME, allows setting and reading the Tattletale's real-
time clock.

Examples: build
this program with

your editor:
input 'THE YEAR IS (1980 TO 2040) ' ?(5)
input 'THE MONTH IS (1 TO 12) ' ?(4)
input 'THE DAY IS (1 TO 31) ' ?(3)
input 'THE HOUR IS (0 TO 23) '?(2)
input 'THE MINUTE IS (0 TO 59) '?(1)
input 'THE SECOND IS (0 TO 59) '?(0)
STOP

Output: THE YEAR IS (0 TO 99) 1996
THE MONTH IS (1 TO 12) 5
THE DAY IS (1 TO 31) 7
THE HOUR IS (0 TO 23) 15
THE MINUTE IS (0 TO 59) 23
THE SECOND IS (0 TO 59) 45

Remarks: STIME <v> translates the '?' array to the variable <v>. Time is counted in
seconds starting at New Years Day 1980. In both cases dates beyond
2047 are out of range. Leap years are handled properly.

Cautions: The ? array is predeÞned. Do not initialize it with DIM!

See Also: RTIME, SETRTC, READRTC, and the section ÒTFX TimekeepingÓ
122 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
STOP stop program execution

Syntax: STOP

Description: This command stops TFBASIC execution. A STOP command is not
needed at the end of the program.

Examples:

Build this
program with

your editor
(indentation for

clarity only)

 gosub psub
 stop

psub: print 'A very dull sample program'
 return

Output A very dull sample program

Remarks: A program can have any number of STOP lines.

See Also: HALT
Chapter 4 : TFBASIC Language Reference 123

STORE store to dataÞle

Syntax: STORE [[#size] [,expr] . . .]

STORE [[#n] [,<x>] . . .]

Description: STORE places bytes, words, double words or strings into the next free
location of the SFLASH dataÞle. Formats #1, #2, and #4 are used to
specify whether the data is to be stored as one, two or four bytes. #1
speciÞes that the least signiÞcant 8 bits be stored, #2 speciÞes that the
least signiÞcant 16 bits be stored, and #4 speciÞes that all 32 bits be
stored. The pointer variable is updated after the data has been stored - it
is accessible from TFBASIC as the read-only variable DFPNT. The default
format of store is in bytes so that the #1 can be omitted in byte storage
commands.

Example - build
this program

Channl = 10 //assign your particular channel
FOR A=1 TO 5 //store five temp measurements
 T=TEMP(CHAN(Channl))
 PRINT #4,T/100,".",#02,T%100; // print them too
 STORE #2,T
NEXT A

ProgramÕs Output 21.14 21.14 21.14 21.14 21.14

Remarks: The #size speciÞer is ignored for ßoating point and string variables. Floats
always store as four bytes. Strings store length byte Þrst followed by that
number of characters that make up the string.

Cautions: Data in the dataÞle is inaccesible from the program., and can only be
retrieved on ofßoad. If you will need the stored data later for calculations
etc. then put a copy in the @ array read/write storage.

See Also: PRINT
124 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
STR assign ASCII formatted output to string

Syntax: STR ([ÒsÓ] [,#n] [,x1] [,\x2])

Description: Create a string by concatenating quoted strings, converted numerical
values (optionally formatted), string variables and character constants in
any order.

ÒsÓ represents a quoted string

#n optional numeric formatting

x1 integer, ßoating point, or string expressions

\x2 character constants

Examples: tempc! = float(temp(chan(0)))/100.0
rh! = float(chan(2))
BigStr$ = str(Òdegrees c =Ó, #6.2F, fempC!,Ó : RH = Ò, rh!)
print BigStr$
store BigStr$

Output: degrees c = 50.5 : RH = 64.00

Remarks: This function formats output exactly like the print statement, but allows
assignment of the results to a string variable.

Cautions: After the output string reaches 255 characters in length all other
characters are discarded.

See Also: PRINT
Chapter 4 : TFBASIC Language Reference 125

TAN Tangent

Syntax: value = TAN(<x>)

Description: TAN returns the tangent of the expression in the parenthesis. The
argument must be in degrees. The function takes a ßoating point
argument and returns a ßoating point value. An integer argument will be
converted to ßoat Þrst.

Example: degrees! = 0.0 // init arg (notice '!' means it's a float)
result! = 0.0 // just to force 'result' to be a float
for i = 0 to 6
 result = tan(degrees)
 print "The tangent of ", #5.1F, degrees, " is ", #6.3F, result
 degrees = degrees + 72.0
next i

Output: The tangent of 0.0 is 0.000
The tangent of 72.0 is 3.078
The tangent of 144.0 is Ð0.726
The tangent of 216.0 is 0.726
The tangent of 288.0 is Ð3.078
The tangent of 360.0 is 0.000

Cautions: DONÕT FORGET! The argument is in degrees, not radians.

See Also: SIN, COS, ATN
126 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
TEMP convert number to temperature

Syntax: value = TEMP(<x>)

Description: TEMP converts the 0-65535 value 'x' to a temperature, assuming that x
results from a measurement of one of the A/D channels that is connected
to a thermistor voltage divider circuit. The temperature conversion is given
in hundredths of degrees C.

Examples: Build
this program with

your editor

for A = 0 to 65520 step 256
 tempVal = temp(A)
 print #4,tempVal/100,".",#02,abs(tempVal) % 100;
 if ((A/256) % 10) = 9 print
next A

ProgramÕs Output 166.00 166.00 166.00 166.00 165.88 158.48 151.08 143.68 136.33 132.00
127.68 123.35 119.05 116.12 113.20 110.27 107.36 105.16 102.96 100.76
98.57 96.82 95.07 93.32 91.57 90.10 88.62 87.15 85.68 84.40
83.13 81.85 80.58 79.48 78.38 77.28 76.18 75.18 74.18 73.18
72.18 71.31 70.43 69.56 68.68 67.86 67.03 66.21 65.38 64.61
63.83 63.06 62.28 61.58 60.88 60.18 59.48 58.83 58.18 57.53
56.89 56.26 55.64 55.01 54.39 53.81 53.24 52.66 52.09 51.51
50.94 50.36 49.79 49.26 48.74 48.21 47.69 47.16 46.64 46.11
45.59 45.09 44.59 44.09 43.59 43.11 42.64 42.16 41.69 41.24
40.79 40.34 39.89 39.44 38.99 38.54 38.09 37.64 37.19 36.74
36.29 35.86 35.44 35.01 34.59 34.16 33.74 33.31 32.89 32.49
32.09 31.69 31.29 30.89 30.49 30.09 29.69 29.29 28.89 28.49
28.09 27.69 27.29 26.89 26.49 26.11 25.74 25.36 24.99 24.59
24.19 23.79 23.39 23.01 22.64 22.26 21.89 21.49 21.09 20.69
20.29 19.91 19.54 19.16 18.79 18.41 18.04 17.66 17.29 16.91
16.54 16.16 15.79 15.39 14.99 14.59 14.19 13.81 13.44 13.06
12.69 12.29 11.89 11.49 11.09 10.71 10.34 9.96 9.59 9.19
8.79 8.39 7.99 7.59 7.19 6.79 6.39 5.96 5.54 5.11
4.69 4.26 3.84 3.41 2.99 2.56 2.14 1.71 1.29 0.86
0.44 0.01 0.41 0.89 -1.36 -1.84 -2.31 -2.79 -3.26 -3.74
-4.21 -4.69 -5.16 -5.64 -6.11 -6.64 -7.16 -7.69 -8.21 -8.76
-9.31 -9.86 -10.41 -10.99 -11.56 -12.14 -12.71 -13.34 -13.96 -14.59
-15.22 -15.87 -16.52 -17.17 -17.82 -18.57 -19.32 -20.07 -20.82 -21.62
-22.42 -23.22 -24.02 -24.97 -25.92 -26.87 -27.82 -28.90 -29.97 -31.05
-32.13 -33.48 -34.83 -36.18 -37.53 -39.36 -41.18 -43.01 -44.85 -47.65
-50.45 -53.25 -56.00 -56.00 -56.00 -56.00

Cautions: No attempt has been made to resolve temperatures greater than 166 C or
less than -56C. Using the12 bit converter gives about 0.03C resolution
for temperatures between about 0C and 35C.

Remarks: The Getting Started section shows the schematic for the circuit and
describes how to connect the thermistor to take temperature readings

See Also:
Chapter 4 : TFBASIC Language Reference 127

TONE send square wave out

Syntax: TONE period, count

TONE <x1>,<x2>

Description: TONE allows you to produce a square wave of predetermined period and
duration output on I/O line 3 The expression 'period' gives the square
wave period, which is measured in multiples of 0.8138mSec. The range
of period is 70 (about 17554Hz) to 65535 (about19Hz). The expression
'count' gives the number of cycles to be output, which can be as few as
one, or as many as 32767 cycles. This output can be used to drive a
speaker and produce notes covering a large portion of the audio
spectrum. TONE sets I/O line 3 to an output and leaves I/O line 3 low at
the end of a command.

A special form of TONE is available to produce a continuous square wave.
Use a value of 0 for the count argument and the square wave will continue
(at the period you select) until you execute a TONE with a zero value for
both the period and count arguments. You can change the period of this
continuous signal Òon the ßy Ò by using TONE with the new period
argument and a zero count argument. The square wave period will
change on the next transition of the signal.

Example 1: X=1000000/4/44/16// Two octaves above 440 'A'
for A=24 to 0 step Ð1
@(A)=X
X=X*106/100
next A // Have half tone scale from @(0) to @(23)
Y=500000
tone @(21),Y/@(21)
tone @(23),Y/@(23)
tone @(19),Y/@(19)
tone @(5),Y/@(5)
tone @(14),Y/@(14)// Recognize that?

Example 2: sleep 0
for i = 10 to 1 step Ð1
tone i*60,0 // update continuous signal period
sleep 10 // produce this frequency for 100 mSec
next i
tone 0, 0 // stop the tone
128 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
Remarks: In the example above, the number of cycles is normalized by the interval
to make the length of the note constant. The above poorly-tempered
scale is actually remarkably close to a well-tempered scale. PRINT
10000*@(24)/@(0) yields the value 2515, about 0.7% away from the right
number (2500). The 1.06 ratio is good to about 1/10 of a half tone per
octave.

Cautions: Driving circuitry should expect the quiescent state to be low. If the TONE
command is not used for a while after power-up, set that line low with a
PCLR 3 command to ensure that the speaker driver is in its low power
state!
Chapter 4 : TFBASIC Language Reference 129

UGET bring character in software UART

Syntax: UGET baud, count, strvar, timeout

UGET <x1>, <x2>, <v>, <x3>

Description: The UGET command treats I/O line 1 as a UART input line to receive
serial data. The input expects CMOS levels and has the marking state
high, inverted from the normal RS-232 sense. The baud rate is speciÞed
by the expression 'baud' and can be any value between 100 baud and
19200. The expression 'count' speciÞes the number of bytes to be
received. 'Strvar' speciÞes the string variable to be used to store the data
as it is received. The data is stored directly into memory and is not
echoed to the screen. The expression 'timeout' speciÞes the time-out (in
1/100ths of a second); this time-out aborts the receiving routine in case
of an external system failure and starts at the beginning of the execution
of the command. time-out can be set to any value between 0.01 and
655.35 seconds.

Example:
(indentation for

clarity only)

 X$ =ÓÓ
UGET 4800,10,X$,800
IF LEN(X$)<10

 GOTO LT10
ENDIF
PRINT ÒRECEIVED ALLÓ:STOP

LT10: PRINT ÒRECEIVED ONLY Ó,LEN(X$),Ò CHARACTERSÓ

Output: RECEIVED ONLY 0 CHARACTERS

This program will try to receive 10 characters at 4800 baud, storing them
int the variable X$, and timing out if all ten are not received in eight
seconds. Provisions are also made to detect and deal with external
system failure.

Remarks: UGET uses I/O line 1 as a UART input line. Like USEND, this line uses
CMOS levels and has a marking high state, inverted from the normal RS-
232 sense. The transfer format for the received characters is eight data
bits, no parity, with one stop bit (at least). The 'count' parameter has a
maximum of 255.

See Also: USEND
130 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
USEND send characters out software UART

Syntax: USEND baud, <string>

Description: USEND sends serial data out I/O line 2. The argument can be any string
expression; constant, variable,or function. The range for ÔbaudÕ is 100 to
19200 or a runtime error will occur.

Example 1:
(indentation for

clarity only)

start: input Òenter text : Òistring$
usend 300,istring$
usend 300, Ò\x0D\x0AÓ // send <cr> <lf>
stop

input this string
at the prompt

followed by
<ENTER>

THIS IS A TEST

Output: : THIS IS A TEST

Example 2 USEND 9600," seconds from power-up";
loop: X=?
 USEND 9600 str(\13,#8,X/100,".",#02,X%100)
 GOTO loop

This simple program continuously displays the time on a terminal
connected to I/O line 2 through a level shifter.

Remarks: USEND uses I/O line 2 as a UART output line. Like UGET, this line uses
CMOS levels and has a marking high state, inverted from the normal RS-
232 sense. The transfer format for the transmitted characters is eight data
bits, no parity, with one stop bit (at least).

Cautions: There is no breakout from USEND, and sending 220K bytes at 110 baud
will take about 6 hours!

See Also: UGET, STR
Chapter 4 : TFBASIC Language Reference 131

VARPTR get address of named variable

Syntax: VARPTR (<variable>)

Description: This function returns the address of the variable named in parentheses.
Since variables are deÞned when they are Þrst used in a program, the
variable can be used here before being deÞned elsewhere. Also, the
variable can be an array but it cannot include the index value. Be aware
that VARPTR returns the address of the most signiÞcant byte of the
variable. The least signiÞcant byte = VARPTR (data) + 3.

Examples:
(indentation for

clarity only)

print varptr(data) //address of beginning of 'data' array (MSB)
print varptr(data)+3 //address of beginning of 'data' array (LSB)

start_prog:
 print "square of values from 0 to 9"
 for a = 0 to 9
 b = a * a
 print #5, a, b
 next a
 print "last b value bytes : ";
 print #02H, peek(varptr(b)), ' ', peek(varptr(b)+1), ' ';
 print #02H, peek(varptr(b)+2), ' ', peek(varptr(b)+3)
end_prog:

See Also: PEEK, POKE
132 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
VGET get variable from user EEPROM

Syntax: value = VGET(<expr>)

Description: VGET returns the corresponding variable value from the User EEPROM
(UEEPROM). Although there are 128 bytes available in the UEEPROM,
they can only be assigned to in 4-byte blocks. These correspond to
locations 0-31.

Example: // Store and retrieve two bytes and a word in a single location

CalValA = 124
CalValB = 37
CalValC = 1027
VSTORE 0, (CalValA + CalValB*256 + CalValB*65536)
...
CalValA = (VGET(0) & &H000000FF)
CalValB = ((VGET(0)/256) & &H000000FF)
CalValC = ((VGET(0)/65536) & &H0000FFFF)

Remarks: VGET can be used to retrieve unique user calibration parameters stored
in the UEEPROM by VSTORE. This permits instruments to have identical
TFBASIC programs while allowing for variations in sensors calibrations.

All values stored in the UEEPROM are assumed to be integer. ASFLT can
be used to recover a ßoating point value stored in the UEEPROM.

FLPTV! = 80.86
VSTORE 20, FLPTV!
FLPTV! = ASFLT(VGET(20))

Cautions: The UEEPROM is only readable and writable from TFBASIC. Any values
stored will not be off-loaded with the main ßash off-load unless
deliberately stored into the main ßash by your TFBASIC program.

See Also: VSTORE, ASFLT
Chapter 4 : TFBASIC Language Reference 133

VSTORE store variable to user EEPROM

Syntax: VSTORE <address>, <expr>

Description: VSTORE stores the 32-bit value of expr at the UEEPROM address. There
are 128 bytes available in the UEEPROM, but they can only be assigned
to in 4-byte blocks. Valid addresses are 0-31.

Example: TempCalVal = 5
PressCalVal! = 1.05
HumidCalVal! = 0.24

VSTORE 0, TempCalVal // store an integer value
VSTORE 1, PressCalVal! // store a floating point value
VSTORE 2, HumidCalVal!

CurrTemp = CHAN(6)* VGET(0)
CurrPress! = float(CHAN(1))* ASFLT(VGET(1))
CurrHumid! = float(CHAN(3))* ASFLT(VGET(2))

Remarks: Both integer and ßoat variables take four bytes, and thus either will neatly
Þt into one location. A simple VGET will return the proper integer value,
but ASFLT() is necessary to recover a ßoating point value stored in the
UEEPROM. No special commands are necessary to store a ßoating point
value.

Cautions: The UEEPROM is only readable and writable from TFBASIC. Any values
stored will not be off-loaded with the main ßash off-load unless
deliberately stored into the main ßash by your TFBASIC program.

The UEEPROM has a Þnite number of write cycles, so avoid frequent
rewriting of locations such as might happen if the VSTORE command
appears in a loop.

See Also: VGET, ASFLT
134 TFX-11 UserÕs Guide

TFBASIC Language Reference for the TFX-11
WHILE loop while expression true

Syntax: WHILE expression

...commands...

...to be executed...

WEND

Description: WHILE loops provide one of four methods of looping available in
TFBASIC. The code between the WHILE and WEND commands will be
executed as long as 'expression' is true. Like the FOR loop, and unlike the
REPEAT loop, the testing of 'expression' takes place before the loop is
executed. Because this structure stores nothing on the stack, you can
nest these loops as deeply as you like. A GOTO can be used to exit any
number of nested WHILE loops.

Example:
(indentation for

clarity only)

// collect data as long as I/O pin 0 is low

 onerr HandleError, errVar
 dfPointer = 0
 sleep 0

 while pin(0) = 0
 store dfPointer, #2, chan(0), chan(2)
 sleep 100
 wend

 print "Finished logging, ready to off-load"
 stop

HandleError:
 if errVar/65536 = 4
 print "Ran out of datafile. Stopped logging"
 else
print "Logging stopped by error #",errVar/65536
 stop

Remarks: none

See Also: FOR, GOTO, REPEAT
Chapter 4 : TFBASIC Language Reference 135

XMIT+, XMITÐ enable, disable console output

Syntax: XMITÐ

or

XMIT+

Description: On receiving the XMITÐ command, the Tattletale will stop echoing
characters received by the main UART. XMITÐ remains in effect until the
Tattletale receives XMIT+ or a power-on reset. Under the inßuence of
XMITÐ, characters sent to the hardware UART are simply thrown away.

Example: xmitÐ
print "You won't see this"
xmit+
print "You WILL see this"
print "Input a number: ";
xmitÐ
input "this prompt will be lost"aNumber
xmit+
print "the number is ", aNumber

Output: you WILL see this
Input a number: <type 123 here> the number is 123

Remarks: XMITÐ is most useful when you don't what characters entered into the
Tattletale to be echoed.

Cautions: Remember, everything is suppressed by XMITÐ, even error messages!

See Also: ITEXT for another method of not echoing input characters.
136 TFX-11 UserÕs Guide

TFBASIC Error Messages
TFBASIC Error Messages

There are two different kinds of errors recognized by TFBASIC. The Þrst
type is caught in the tokenizer. These are usually editing or syntax errors.
The second type of error is caught at run-time. These are usually
mathematical bounds errors. When an error is encountered in an
executing program, execution is halted, and the word "HOW?" and the
error number are displayed followed by the address of offending token.
The token address can be found in the Token List Þle created by the Alt-T
command in TFTools. The error numbers with causes are listed below:

HOW? errors ¥ 1 : not used in TFBASIC
¥ 2 : array variable index out of range
¥ 3 : not used in TFBASIC
¥ 4 : STORE out of range of the dataÞle
¥ 5 : not used in TFBASIC
¥ 6 : integer divide by zero
¥ 7 : integer multiply overßow
¥ 8 : not used in TFBASIC
¥ 9 : integer add or subtract overßow
¥ 10 : ABS argument = -2147483648
¥ 11 : A-D channel not supported
¥ 12 : I/O pin not supported
¥ 13 : attempt to set input only pin to output
¥ 14 : input to TEMP out of range
¥ 15 : not used in TFBASIC
¥ 16 :SDI requested <1 or >32 bits
¥ 17 : COUNT timeout > 65535
¥ 18 : PERIOD argument out of range
¥ 19 : not used in TFBASIC
¥ 20 : not used in TFBASIC
¥ 21 : not used in TFBASIC
¥ 22 : not used in TFBASIC

¥ 23 : not used in TFBASIC

¥ 24 : SLEEP interval > 32767

¥ 25 : UGET/USEND baud rate out of range

¥ 26 : not used in TFBASIC
Chapter 4 : TFBASIC Language Reference 137

¥ 27 : TONE parameter out of range
¥ 28 : not used in TFBASIC
¥ 29 : date/time input to STIME out of range
¥ 30 : integer input to RTIME out of range
¥ 31 : HYB interval overßow
¥ 32 : SDO requested <1 or >32 bits
¥ 33 : CALL address > 65535
¥ 34 : not used in TFBASIC
¥ 35 : not used in TFBASIC
¥ 36 : VSTORE/VGET index out of range (>31)
¥ 37 : UGET timeout > 65535
¥ 38 : STIME out of range
¥ 39 : not used in TFBASIC
¥ 40 : not used in TFBASIC
¥ 41 : PRINT Þeld width > 255
¥ 42 : FIX/INT result overßow
¥ 43 : OFFLD x,y; where x > y
¥ 44 : Bad argument to BAUDSET
¥ 45 : Flash EEPROM command failed
¥ 46 : not used in TFBASIC
¥ 47 : array index out of bounds
¥ 48 : not used in TFBASIC
¥ 49 : Illegal RATE argument
¥ 50 : not used in TFBASIC
¥ 51 : stack running low
¥ 52 : PIC command failure
¥ 53 : not used in TFBASIC

¥ For applications where these responses are undesirable, they can be
replaced by a 'goto on error' response using the ONERR command.
138 TFX-11 UserÕs Guide

CHAPTER 5
TFBASIC Assembly Language
Reference
TFX-11 UserÕs Guide

TFBASIC Assembly Language Reference

TFBASIC
Assembly
Language

The TFBASIC tokenizer (running on the host computer) has a built-in
assembler. The tokenizer switches from generating tokens to assembling
when it encounters the ASM command and switches back to tokenizing
when it encounters the END command. This assembler allows the use of
named labels and it can access TFBASIC variables by name.

Labels,
assembler

Labels can be used in the assembly code for ßow control and to deÞne
local variables. Labels must start in the Þrst column. Labels can be up to
32 characters long and must begin with a letter or an underscore (_).
The only valid characters in a label are upper and lower case characters,
the numbers and underscore. The label name can be terminated with a
colon (when the label is deÞned) but this is not necessary in the
assembler. These labels are accessible to the CALL command as long as
they are deÞned before CALL is invoked. TFBASIC labels are not
accessible to the assembly code (although TFBASIC variables are).

Assembler
Opcodes

The TFBASIC assembler recognizes all of the opcodes deÞned in the
Motorola manuals with some exceptions including all those using the Y
register. These include ABY, CPY, DEY, INY, LDY, PSHY, PULY, STY, TSY,
TYS, XGDY, CPD, STOP, BRCLR, BRSET, IDIV, and FDIV.

Opcodes must have at least one character of whitespace (space
character or tab) in front of them on the line OR a label terminated with a
colon.

Referencing
HC11 control

registers

The Motorola reference manual places the control registers starting at
location 1000H. On startup the TFX-11 relocates these registers to start
at location 0. When referencing the control registers in your assembly
code donÕt forget to subtract the 1000H from the addresses given in the
Motorola manual to get the correct address.

Two forms of
ASM

Assembly routines can be either executed in-line with TFBASIC
commands or accessed as subroutines from TFBASIC using the CALL
command depending on the argument that follows ASM.

In-line assembly
(ASM $)

The assembler (built in to the tokenizer) assembles from the line after the
ASM $ until it detects the END command. The interpreter will switch from
interpreting tokens to executing the assembly code when it reaches the
140 TFX-11 UserÕs Guide

TFBASIC Assembly Language Reference
ASM$ statement, and go back to interpreting tokens when it reaches the
END statement. No RTS, RTI or other special ending command is needed
before the END statement.

Example This example shifts each bit of a TFBASIC variable one bit to the left with
the most signiÞcant bit rotated around to the least signiÞcant bit position.
Note how the TFBASIC variables are handled. The name ToBeRotated
points to the most signiÞcant byte of the variable.To access the other
three bytes of the variable:

To get this byte of variable: Use this name:
most significant byte ToBeRotated
next most significant byte ToBeRotated+1
third most significant byte ToBeRotated+2
least significant byte ToBeRotated+3

Example 1: input ÒValue to rotate: Ò ToBeRotated
input ÒNumber of bits to rotate: ÒNumberShifts
print Òvalue before rotation Ò,ToBeRotated

asm $
;nothing else on above line - not even comments!
ldab NumberShifts+3 ;get number of shifts in

; B register
loop beq leave ;if number of shifts is

; zero, exit
rol ToBeRotated+3 ;ls byte, ms bit to carry,

; garbage into ls bit
rol ToBeRotated+2 ;carry into ls bit, ms bit

; into carry
rol ToBeRotated+1
rol ToBeRotated ;done, except ls bit of ls

; byte is garbage

bcc no_carry ;branch if carry = 0
ldaa ToBeRotated+3 ;get here if carry bit set
oraa #1 ; so set the ls bit
bra endloop

no_carry
ldaa ToBeRotated+3 ;carry bit (from ms bit)

; is 0 so
anda #&HFE ;clear the ls bit

endloop
staa ToBeRotated+3 ; restore the ls byte
Chapter 5 : TFBASIC Assembly Language Reference 141

decb ; count shift completed
bra loop

leave end
//on the above line, leave is an assembler label and end
//end is a TFBASIC command

print Òvalue after rotation Ò,ToBeRotated
stop

The Þgure above shows the operation of the assembly routine for one
pass around the loop. Each TFBASIC variable is 32 bits wide. The Þgure
shows the four most signiÞcant and four least signiÞcant bits of variable
ToBeRotated. The value in variable NumberShifts tells how many times to
do this operation. In the assembly section, everything after a semicolon
and up to the end of the line, is considered a comment. The assembler
does not recognize TFBASIC comments.

This Þrst form of the ASM command provides no way to initialize the A, B
or X registers before entering the assembly code. The second form of
ASM, described below, does.

Assembly to an
address (ASM

<address>)

This form of embedding assembly code differs from the above in that
when the token interpreter reaches this point in the program, it does not
execute the assembly code!. Instead it copies the assembly code to the
address speciÞed in the argument following the ASM command. After
placing the code at the speciÞed address the token interpreter continues
execution with the tokens following the assembly code. To actually
execute the assembly routine, you must use the CALL command.

Also with this form, an RTS instruction is automatically appended to any
code you write. This is Þne if you're writing normal assembly subroutines
but you cannot use this method to write data to a RAM address. Use the
POKE command instead.

The TFBASIC
'CALL' command

syntax

CALL <x1>, <x2>, [<v>]

x1 the address of the assembly routine - this is the memory address or a
predeÞned label following the ASM command.

¥¥¥¥

¥¥¥¥

31 0
MS LS
142 TFX-11 UserÕs Guide

TFBASIC Assembly Language Reference
x2 the state of the X, A and B registers to be upon entering the subroutine

v an optional variable name to receive the state of the X, A and B
registers when the subroutine returns to TFBASIC.

The translation of the x2 and v arguments into the microprocessors
registers:

In the example below, the B register is Þlled with the ASCII value of a
character to be sent out the UART. The X register is Þlled with the number
of times to send this character (beware, zero in the X register will send it
65536 times!).

Example 2: // do not use location 400H if using CSIO1 and CSIO2 chip selects
print ÒStart out in TFBASICÓ
asm &H0400

;assembly routine will load at address74C0H >
test ldaa HÕ2E ;test if transmit register empty

anda HÕ80 ;test bit
beq test ;branch back if not empty

stab HÕ2F ;send character in B reg by storing
; in register 13H

dex ;Count down one character
bne test ; if not zero, branch back for more
end
print ÒASM code has been loaded at 0400HÓ

sleep 0
sleep 50 // must wait for PRINT output to finish

call &H0400,&H10041
// X register= 1, A register= 0, B register= 41H =ÔAÕ
call &H0400, &H20042
// X register= 2, A register= 0, B register= 42H =ÕBÕ
call &H0400, &H30043
// X register= 3, A register= 0, B register= 43H =ÕCÕ
call &H0400, &H1000D
// X register= 1, A register= 0, B register= 0DH = CR
call &H0400, &H1000A
// X register= 1, A register= 0, B register= 0AH = LF
print ÒFinishedÓ

TFBASIC Variable / Expression

X register A register B register

31 0

0715 7 00
Chapter 5 : TFBASIC Assembly Language Reference 143

Notice the lines sleep 0 followed by sleep 50. The PRINT command in
TFBASIC sends all its output to a buffer. The characters in this buffer are
sent out the UART in the background as fast as the baud rate will allow,
but this is slow compared to the speed of the CPU. When the PRINT
command is completed, TFBASIC continues on with the next command
while characters may still be waiting in the buffer to be sent out the UART.
The assembly routine we wrote bypasses the UART buffer and will
interfere with characters being automatically output from the buffer. So,
we pause to let the buffer clear before using our routine.

Radix Notice the new methods of deÞning the number base of constants. You
have these options IN THE ASSEMBLER ONLY. For example, the
constant 19 decimal can be deÞned as:

Decimal is the default base
&H works the same as in TFBASIC

decimal: 19D or DÕ19 or 19
hex: 13H or &H13 or HÕ13 or $13
octal: 23O or 23Q or QÕ23 or @23
binary: 10011B or BÕ10011 or %10011
144 TFX-11 UserÕs Guide

ASM mnemonics and addressing modes
ASM mnemonics and addressing modes

The TFBASIC assembler uses the same opcode mnemonics that
Motorola uses in its HC11 literature. All assembler mnemonics must have
at least one character of whitespace (space character or tab) in front of
them on the line or a label terminated with a colon.

Single Byte
(Inherent)

The single byte instructions, like NOP and RTS, can be preceded and/or
followed by an arbitrary number of spaces and tabs.

Indirect (Indexed) These instructions use the 'X' register as a pointer. They have the form:

MNEMONIC <expr>,X

where <expr> is a positive offset and must evaluate to a number in the
range of 0 to 255, and the 'X' (upper or lower case) must follow the
comma without any intervening space. Examples:

LDAA 0,X ; load A reg with byte pointed to by X
STAA 7*8-4,X ; store A reg at address contained in X + 52

Extended Extended instructions may address within the full 64K memory space.
They have the form

MNEMONIC <expr>

If <expr> evaluates to a number outside the range of 0 to 65535, the
assembler (in the tokenizer) will print an error message. Examples:

LSR H'74C0 ; logical shift right of the byte at 74C0H
ROL 118H ; rotate byte at 118H left through carry

Extended/Direct Many instructions have shortened versions (called 'direct' by Motorola) for
addressing page zero memory (address < 256), as well as full length
versions for addressing all of memory. The 'direct' version of the
instructions takes two bytes instead of three. The assembler Þrst
evaluates the <expr>. If the result is in the range 0 to 255, the assembler
uses the direct form; otherwise, the assembler uses the extended form.
Examples:

SUBB 10 ;direct, subtract byte at addr 10 from B reg
SUBB 256 ;extended,subtract byte at address 256 from B
CMPA 255 ;direct, compare A reg with byte at addr 255
LDAA 7*128 ;extended, load A reg with byte at address 896
Chapter 5 : TFBASIC Assembly Language Reference 145

Relative The branch instructions form a displacement from the address of the byte
immediately following the branch instruction to the address that is to be
branched to. In the form used by the assembler, the address is speciÞed,
not the displacement. The assembler will then calculate the displacement.
You can use either a label or an absolute number to specify the address.
Examples:

BNE _NoMore ; branch if not equal to label '_NoMore'
BRA 74C0H ; branch always to address 74C0H

Relative branches must be within +127 and -128 of the start of the next
instruction. If the displacement does not fall within this range, a tokenizer
error will result.

Immediate An immediate instruction deals with a value instead of an address. The
form of the immediate instruction is shown below:

MNEMONIC #<expr>

There must be white space (tabs or spaces) between the MNEMONIC
and the '#'. There can be white space between the '#' and the <expr>. The
assembler checks <expr> and makes sure it is in range (0 to 255 for some
commands, 0 to 65535 for others). Examples:

LDAA #&H23 ; load A reg with 35 (23H)
LDD #&H1234 ; load A/B registers with 4660 (1234H)
SUBD #7*16+&H4000 ; subtract 16496 (4070H) from A/B reg

Data Test and Bit
Manipulation

These instructions read the addressed memory, the Þrst operand, and
modify this value using the second operand. The modiÞed value is then
written back to the target address.

BSET Flags,HÕ80 ;Set MSB in location Flags
BCLR Flags,HÕ80 ;Clear MSB in location Flags-

; note the bit cleared is set
; in the operand mask.

These instructions perform a read-modify-write on their target locations.
Caution must be used when read-modify-write instructions such as BSET
and BCLR are used with I/O and control registers because the physical
location read is not always the same as the location written. See the
Motorola documentation for more information.
146 TFX-11 UserÕs Guide

Summary of TFBASIC Assembler Directives
Summary of TFBASIC Assembler Directives

The assembler makes some directives and pseudo-ops available. Here is
a brief listing of the directives in the TFBASIC assembler. The second
section goes into more detail and provides examples of how the directives
are used.

The TFBASIC assembler directives are grouped into four categories:
source control, data declaration, symbol declaration and location control.
The source control directives tell the assembler where its source code
starts and ends. The data declarations allow you to initialize an area of
memory from an expression or string. The symbol declaration directive
allows you to assign a numeric value to a symbol name that can be used
anywhere a constant is expected. The location controls allow you to set or
modify the location counter (the address to which code is assembled).
Notice that the TFBASIC command ASM is in two categories.

Source Control ASM Start assembly source (See TFBASIC Command ref.)
END End assembly and return to TFBASIC

Data Declarations DATA Declare initialized data (IEEE)
DB "Define Byte" (Intel)
FCB "Form Constant Byte" (Motorola)
DW "Define Word" (Intel)
FDB "Form Double Byte" (Motorola)
FCC "Form Constant Characters" (Motorola)

Symbol
Declarations

EQU Assign value to symbol

Location Control ALIGN Force location counter alignment
RES Reserve uninitialized data
DS "Define Storage" (Intel)
RMB "Reserve Memory Block" (Motorola)
Chapter 5 : TFBASIC Assembly Language Reference 147

Details of the TFBASIC Assembler Directives
148 TFX-11 UserÕs Guide

Details of the TFBASIC Assembler Directives
ALIGN

Syntax: [label]align expr [; comments]

Description: The align directive forces the location counter to align to a boundary that
is a multiple of the value speciÞed by the expression in the operand Þeld.

Examples: _align: align 2 ; align on word boundary
data "word"
align 4 ; align on long boundary
data "long"
align 256 ; align on page boundary
data "page"
align 32768 ; align on enormous boundary
data "huge"
align 1 ; back to byte boundary
data "byte"

Remarks: Values in the align expression must not contain any forward references.
Chapter 5 : TFBASIC Assembly Language Reference 149

DATA, DB, FCB, DW, FDB, FCC

Syntax: [label]data[.size] expr|"string" [,expr|"string"...][; comments]
[label]db expr|"string" [,expr|"string"...] [; comments]
[label]fcb expr|"string" [,expr|"string"...] [; comments]
[label]dw expr|"string" [,expr|"string"...] [; comments]
[label]fdb expr|"string" [,expr|"string"...] [; comments]
[label]fcc <delim>"string" <delim> [; comments]

Size SpeciÞers
(for 'data'

directive only)

.b .B Byte

.s .S Short(2 Bytes)

.w .W Word (2 Bytes)

.l .L Long (4 Bytes)

.q .Q Quad (8 Bytes)

Description: The various data declaration directives instruct the assembler to generate
initialized data from expressions and strings. The size of the data
generated for each expression is determined either explicitly with "dot-
size" sufÞxing as in the data directive, or implicitly by the directive name.
Expression values are truncated to Þt into objects of the speciÞed size.
The data directive and the "dot-size" sufÞxes shown in the table conform
to the guidelines of the IEEE-694 standard for microprocessor assembly
language. The fcb (Form Constant Byte), fdb (Form Double Byte), and
fcc (Form Constant Characters) are provided as a convenience to
programmers more comfortable with Motorola pseudo-ops, while the db
(DeÞne Byte), and dw (DeÞne Word) are available for programmers
preferring Intel mnemonics. With the exception of the fcc directive, all of
the data directives accept any combination of strings and expressions.
Strings used with these directives must be enclosed inside double-
quotes. Use two consecutive double-quotes to generate one double-
quote character in the output data.

The fcc directive generates data from string expressions bracketed by the
Þrst character encountered in the operand Þeld. Use two consecutive
occurrences of the delimiting character to generate one instance of the
character in the output data.

Examples: _data: data "sample string"
data "several", "different", "strings"
data "several", 0, "terminated", 0, "strings", 0
data "sample string with quote ("") character"
data "string with byte expression", 10
150 TFX-11 UserÕs Guide

Details of the TFBASIC Assembler Directives
;
data 0,1,2,3 ; yields: 00 01 02 03
data.b 0,1,2,3 ; yields: 00 01 02 03
data.w 0,1,2,3 ; yields: 00 00 00 01 00 02 00 03
data.l 0,1 ; yields: 00 00 00 00 00 00 00 01
data.q 0 ; yields: 00 00 00 00 00 00 00 00

;
_db: db "string with ending bit 7 hig", 'h' + h'80
_fcb: fcb "string with embedded quote ("")"

db 'ab' ; should just be h'61
fcb '''' ; the single-quote character

;
_dw: dw 0,1,2,3 ; yields: 00 00 00 01 00 02 00 03

dw 'ab' ; should be h'6162
_fdb: fdb '''''' ; two single-quote characters
;
_fcc: fcc :string with colon (::) terminators:

fcc ~string with tilde (~~) terminators~
fcc /string with forward slash (//) terminators/

Limits: Maximum of 255 bytes generated from a single data statement.
Chapter 5 : TFBASIC Assembly Language Reference 151

END

Syntax: [label]end [; comments]

Description: The end directive instructs the assembler to stop reading the current
source Þle and return control to the TFBASIC tokenizer.

Example: asm $
ldaa #12
ldx #H'86
staa 0,x
end ; Configuration Byte set
152 TFX-11 UserÕs Guide

Details of the TFBASIC Assembler Directives
EQU

Syntax: label equ expr [; comments]

Description The equ directive permanently assigns a numeric value to a symbol which
may be used anywhere a constant is expected. Both the label and
operand Þelds are required.

Examples: FALSE equ 0
TRUE equ ~FALSE
DEBUG equ FALSE
DEL equ H'7F ; ASCII delete
CR equ H'0D ; carriage return
LF equ H'0A ; line feed
TAB equ H'09 ; horizontal tab
SP equ H'20 ; 'space' character

Remarks: Values used in the assignment expression must not contain any forward
references. The TFBASIC assembler does not adapt EQU to perform text
substitution on arguments which do not evaluate to a number.
Chapter 5 : TFBASIC Assembly Language Reference 153

RES, DS, RMB

Syntax: [label]res expr [; comments]
[label]ds expr [; comments]
[label]rmb expr [; comments]

Description: The res, ds, and rmb directives deÞne a block of uninitialized data equal in
length to the value of the expression in the operand Þeld multiplied by the
optional size speciÞer. Blocks declared using the reserve directives affect
only the location counter and do not generate any output data in the
object Þle.

Examples: asm h'4000
_res: res h'100 ; should be 4000 - 40FF

res.b h'100 ; should be 4100 - 41FF
res.s h'100 ; should be 4200 - 43FF
res.w h'100 ; should be 4400 - 45FF
res.l h'100 ; should be 4600 - 49FF
res.q h'100 ; should be 4A00 - 51FF

Remarks: Values used in reserve statements must not contain any forward
references.
154 TFX-11 UserÕs Guide

Assembly Language Subroutines
Assembly Language Subroutines

The following locations are the entry points into Þxed assembly language
routines.

ATOD12 FD9A. Get reading from 12-bit A-D converter. Enter with one of the
channel numbers (0 - 13) in B register. Channels 0 - 10 specify one of the
external A-D input channels. Channels 11, 12 or 13 specify one of the
reference channels. Return with MSB value in A register, LSB value in B
register with value shifted left four bits.

PDAD12 FD9D. Power-down 12-bit A-D converter.

ATOD8 FDA0. Get reading from 8-bit A-D converter internal to 68HC11. Enter
with one of the channel numbers (0 - 7) in B register. Return with value in
A reg, zero in B register.

GETBSR FDA3. Read byte from Bank-switched RAM. Offset into bank in X register,
values from 0 to 60927 valid. Byte returned in A register

STRBSR FDA6. Store byte in Bank-switched RAM. Byte to store in A register.
Offset into bank in X register, values from 0 to 60927 valid.

STRMEM FDA9. Store byte in A register to next location in dataÞle.

CHIBUF FDAC. Return next byte in UART input buffer without removing it. Byte
returned in A register.

FLUSHI FDAF. Flush UART input buffer.

FLUSHO FDB2. Flush UART output buffer.

OUTTST FDB5. Check for characters in UART output buffer. Number of characters
remaining is returned in the A register.

URTGET FDB8. Receive next byte from UART buffer and return in A register.
Returns the number of characters remaining in the buffer in the B register.
Waits for a byte before returning.

URTSND FDBB. Send byte in A register out UART (via buffer).
Chapter 5 : TFBASIC Assembly Language Reference 155

URTTST FDBE. Return number of characters available in UART input buffer in A
register.

STPWCH FD97. Stopwatch functions. Values returned are four-bytes, with MSBs in
register X and LSBs in register D. Units are in ticks and will depend on the
RATE command. Call with a value of 0-4 in the B register for one of Þve
functions:.

Example
showing how

RATE interacts
with Stopwatch

function

start: input "RATE value "r
if r > 32
goto start // limit RATE to 32 for now
endif

rate r // set to change timer resolution
secPerTick! = 1.0 / (100. * r)
print "Timer resolution = ",#.4f,secPerTick," seconds"

input "Hit key to start"dummy,#1

call &hfd97,0 // initialize and zero stop watch
input "Hit key to stop"dummy,#1

call &hfd97,3,ticks // get current stop watch time
call &hfd97,1 // remove stop watch from system clock
print #.4f,ticks*secPerTick," seconds"
goto start

B reg Function

0 Initialize. Chains the stopwatch interrupt to the system
clock and zeroes the clock. Must be called before other
functions are used.

1 Remove stopwatch clock. Calling this saves the extra
time stopwatch adds to the system clock handler.

2 Clear clock. Clears the stopwatch to zero. Stopwatch
keeps running.

3 Get clock. Returns current stopwatch value then clears
stopwatch to zero. Stopwatch keeps running.

4 Split clock. Returns current stopwatch value but DOES
NOT clear stopwatch value. Stopwatch keeps running
156 TFX-11 UserÕs Guide

Important Addresses in TFBASIC
Important Addresses in TFBASIC

These system variables may be accessed in your assembly routines or
with PEEK and POKE. Be warned - be sure you know what you are doing
or you may have unintended side effects.

time variables addresses notes
? variable 60H - 63H seconds since 1/1/80
? tick 64H 0.01 seconds

? array - ?(0) 65H - 68H second
? array - ?(1) 69H - 6CH minute
? array - ?(2) 6DH - 70H hour
? array - ?(3) 71H - 74H day
? array - ?(4) 75H - 78H month
? array - ?(5) 79H - 7CH year
? array - ?(6) 7DH - 80H 0.01 ticks

other variables Each variable must be accessed by the address given, not by its name.

¥ CCOUNT 9BH Count of CTRL-Cs pending (See CBREAK)
¥ CENAB 9CH CTRL-C enable (zero = ignore CTRL-C)
¥ TRACE 9DH When set to non-zero to trace execution
¥ OVRSLP 9EH Flag that signals SLEEP detected oversleep
¥ BRKCNT 9FH Count of RS232 break conditions since last call

to FLUSHI or power on reset.
¥ LNCHSTAT A0H Bits are set to indicate certain errors when

program is launched accoring to the following:

Bit 0 Set if there was a checksum error of code stored in SFLASH.

Bit 1 Set if there was an error getting clock time from PIC. In this
case, the clock will be set to zero (midnight January 1, 1980)

Bit 2 Set if there was an error getting the dataÞle pointer (DF
pointer) from the PIC. In this case, the dataÞle pointer will be
set to zero.

Bit 3 Set if there was an error accessing the SFLASH
Chapter 5 : TFBASIC Assembly Language Reference 157

15
Interrupt Vector Table

Overview To allow the interrupt vectors to be user modiÞable the interrupt vectors in
EEPROM all point to jump vectors that reside in the HC11 RAM. Each
RAM vector is made up of a JMP instruction followed by a two-byte
address. To change the vector you must replace the RAM address (in
most cases it points to an RTI) with the address of your own handler.

Addr Mnemonic Explanation Used by TFBASIC

FD C1 SCI Serial Communications Interface UART routines

FDC4 SPI Serial Peripheral Interface

FDC7 PAIE Pulse Accumulator Input edge

FDCA PAO Pulse Accumulator Overßow

FDCD TO Timer Overßow PERIOD command

FDD0 IC5/OC4 Timer IC4 OC5 TONE command

FDD3 TOC4 Timer Output Compare 4 system clock

FDD6 TOC3 Timer Output Compare 3 UGET command

FDD9 TOC2 Timer Output Compare 2

FDDC TOC1 Timer Output Compare 1

FDDF TIC3 Timer Input Compare 3 COUNT/PERIOD commands

FDE2 TIC2 Timer Input Compare 2

FDE5 TIC1 Timer Input Compare 1

FDE8 RTI Real-time Interrupt (alt system clock)

FDEB IRQ External Interrupt Request

FDEE XIRQ Extra External Interrupt Request HYB routine

FDF1 SWI Software Interrupt

FDF4 IOT Illegal Opcode Trap

FDF7 COPF ÒCOPÓ Failure

FDFA CMF Clock Monitor Failure

FDFD RESET RESET used by Bootloader
8 TFX-11 UserÕs Guide

CHAPTER 6
TFBASIC Internals
TFX-11 UserÕs Guide

TFBASIC Structure

Overview TFBASIC adds a tokenizing pass between editing the program and
sending it to the Tattletale. This pass is transparent in that it is part of the
routine that sends the program to the Tattletale. It's fast too, especially
when using the parallel port cable.

The Host
program : Editor /

Tokenizer /
program loader

Before a program is sent to the Tattletale it is tokenized by the host
computer, an IBM PC (or compatible), running TFTools. The tokenizer in
TFTools reads each command line and splits it into discrete, basic
operations, and converts all expressions to their Reverse Polish
equivalents. Each operation is deÞned by a token (or label) and a set of
parameters. When tokenized, the program is sent to the Tattletale where it
can be run.

If a syntax error is found during tokenizing the program is not loaded and
the offending line is ßagged in the editor so that the error can be
corrected.

Details of the
Tattletale
Program

The TFBASIC program runs on the Tattletale and has two distinct parts:
the programÕs tokens, which are generated from your source code, and
the token interpreter engine, which executes the tokens. The Tattletale's
interpreter engine includes a monitor that is active when the userÕs
program is not running and is identiÞed by the # prompt. The interpreter
and monitor are loaded along with the program tokens and makes up the
program code that is downloaded to the TFX Ôs Serial FLASH (SFLASH).

Token Engine The Token Engine is an interpreter that executes the TFBASIC program
tokens, jumping to the Monitor on an error (unless redirected with the
ONERR command), receiving a CTRL-C (unless redirected by the
CBREAK command), or after executing a 'STOP' or ÔHALTÕ.

Write program in
 TFTools editor

Tokenize
program

Send program
to Tattletale

Launch or Run Command

Token
 engine MonitorCtrl-C*, HOW error**,STOP
160 TFX-11 UserÕs Guide

TFBASIC Structure
* only if not redirected by CBREAK
** only if not redirected by ONERR

Monitor The monitor has a number of functions that respond to control characters:

CTRL-R. Start the interpreter on the program already in RAM

CTRL-L. Load a tokenized program into RAM

CTRL-E. Erase the dataÞle

CTRL-O. Start XMODEM off-load of the dataÞle

CTRL-H. Load and execute a HEX Þle.

These characters may be entered when the terminal window is active.

On Launch or
Power-up RESET

On launch the Tattletale always copies the operating system and program
(if present) from SFLASH to RAM. It then checks to see if there is a valid
program in RAM by verifying the checksum and performing other checks
as described below. Bits are set in location A0H to report the following
errors:

¥ Bit 0 will be set if there was a checksum error (of code stored in the
SFLASH).

¥ Bit 1 will be set if there was an error getting clock (from PIC). In this
case, the clock will be set to zero (January 1, 1980 at midnight).

¥ Bit 2 will be set if there was an error getting DF pointer (from PIC). In
this case, the dataÞle pointer will be set to zero.

¥ Bit 3 will be set if there was an error accessing the SFLASH.

NOTE: If all is OK the value in this location will be 0.

TFTools :
TFBASIC

development on
a PC

To develop TFBASIC applications in a PC environment you will need the
TFTools Integrated Development Environment (IDE). The IDE provides
the tools to edit, load, and run programs as well as off-load the stored
data and view activity on the serial port.
Chapter 6 : TFBASIC Internals 161

TFBASIC Power-
up Program

Launch

When you Þrst Þred up your Tattletale, it printed a sign-on message :

Tattletale Model 11.00
TFBASIC Version 1.00
(C) 1997 Onset Computer Corp.
#

The Tattletale is running a program written in TFBASIC that was stored in
SFLASH at the time of manufacture. This program ends with a STOP
command so that the prompt will appear. This section shows you how to
make your program launch on power-up instead of the one that prints the
message shown above.

CTRL-C TFBASIC programs, no matter how launched, will break with a CTRL-C
unless a CBREAK command has been used to specify a line number to
restart to when a CTRL-C is encountered. You can disable CTRL-C
breaks by writing a zero byte to address 9C hex. A count of CTRL-C
characters will continue to be updated at address 9B hex. Clear this
before you re-enable break-outs. See CBREAK.

Power-up for
TFBASIC

On power-up TFBASIC copies the program and operating system to RAM
and launches that program. Remember that the program will always

Tattletale Model 11.00

TFBASIC Version 1.00

(C) 1997 Onset Computer Corp.

#

162 TFX-11 UserÕs Guide

TFBASIC Structure
break out upon Þnding a CTRL-C unless a CBREAK command has been
used to specify a label to vector to when a CTRL-C is encountered.

Making your
program

permanent

Using the LAUNCH command will erase the contents of the dataÞle, reset
the dataÞle pointer to 0. It then replaces previously stored program (if any)
with a fresh copy of the TFBASIC token interpreter engine and your
compiled program tokens.
Chapter 6 : TFBASIC Internals 163

TFBASIC Integers

Internal
representation

Integers are represented as a signed sequence of 32 bits, arranged as
four bytes. The format is as follows :

 MSB byte 2 byte 3 LSB

SBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB

where S is the sign bit and B represents the remaining 31 individual bits in
descending order.

The range of Tattletale integers is 232 which, with the sign bit, gives a
range of Ð2147483648 to 2147483647. Any attempt to create a number
outside this range will result in a run time error.

Assigning A/D
conversion
values to a

TFBASIC
variable.

The A/D converters return two bytes, left justiÞed so that all conversions,
no matter the resolution, span a range of 0-65520 for the 12-bit A/D and
0-65280 for the eight bit. The TFX supports only unipolar operation of the
A/D so the assignment of the type:

A_D_Value = CHAN(12)

will always produce the correct value and sign.

Big-endian vs.
Little-endian

In the early days of microprocessors Intel and Motorola independently
devised equal but opposite storage sequences for the order of
signiÞcance in multi-byte data items. In IntelÕs little-endian world the Least
SigniÞcant Byte (LSB) is stored Þrst in the lowest address, and the Most
SigniÞcant Byte (MSB) in the highest address. MotorolaÕs order, big-
endian, is just the reverse. The Motorola processor in the TFX-11 uses the
Motorola sequence, but when the data is off-loaded directly from the
dataÞle to an Intel based PC the order for multiple-byte data items is now
reversed. If you try to access a four byte integer stored as binary from a
BASIC or C program this byte reversal will cause incorrect results. This
reversal has been a cause of much confusion, partly because it always
works correctly for single bytes.
164 TFX-11 UserÕs Guide

TFBASIC Integers
NOTE: The terms little-endian and big-endian come from GulliverÕs
Travels., where Jonathan Swift imagined a never-ending war between two
Kingdoms; one, the Big-Endians, who crack open their hard boiled-eggs
on the big end, and the other, the Little-Endians, who crack open their
hard boiled-eggs on the opposite end.

Byte sequence
and VARPTR(x)

Since integers in TFBASIC are stored MSB Þrst the address returned by
VARPTR(x) returns the MSB of the integer. The LSB of the integer is at
the address VARPTR(x)+3. In the following example it is assumed you
want to only return the LSB of the variable, and the other three bytes can
be safely ignored.

Example:

X= 100 // put a number (<255) in the LSB of X
y = varptr(X)
print ÒValue of X = Ò, peek(y) // pointing to MSB

Output:

Value of X = 0

TABLE 1.

memory
address

big-endian
TFX

little-endian
PC

A+0 MSB LSB

A+1

A+2

A+3 LSB MSB

TABLE 2.

memory
address

A+0 MSB (VARPTR(x) points here)

A+1 ...

A+2 ...

A+3 LSB
Chapter 6 : TFBASIC Internals 165

This is obviously not the correct answer. The +3 added to y in the peek
function of the following code corrects the problem:

Example:

X= 100
y = varptr(X)
print ÒValue of X = Ò, peek(y+3) // now pointing to LSB

Output:

Value of X = 100
166 TFX-11 UserÕs Guide

TFBASIC Floating Point
TFBASIC Floating Point

The ßoating point format used is based on the IEEE 754 single precision
ßoating point standard. The range of representable values is ±1.175494E-
38 to ±3.402823E+38 and zero. Also, ±inÞnity and not-a-number (NaN)
are represented.

Internal
representation

Single precision ßoating point numbers are represented in four bytes. The
format is as follows :

 MSB byte 2 byte 3 LSB

SEEEEEEE MMMMMMMM MMMMMMMM MMMMMMMM

S = sign bit; 0 = positive, 1 = negative

E = binary exponent with bias of 128

M = mantissa with 23 explicit bits and an implied 1 bit as the most
signiÞcant bit

In the Tattletales, the most signiÞcant byte is at the lowest address of the
four bytes. This is important if binary data is transferred directly to a
computer that interprets numbers in the opposite order (as all computers
with Intel microprocessors do). SEE INTEGERS ABOVE for further
explanation.

Variables When using a ßoating point variable for the Þrst time, append an
exclamation point (!) after the last character of the name. It allows the
tokenizer to check that the correct types are being used for arguments. It
also allows the tokenizer to automatically convert data to the correct
representation.

Example : sineValue! = sin(90.0)
sineSquared! = sineValue! * sineValue!
dim sineList!(100)

Although the ! type identiÞer only needs to be used the Þrst time a variable
is declared, for clarity it is recommended that it also be used with every
instance of the same variable. Notice how the variable was declared as a
ßoating point array. This MUST be done in the DIM statement because
this is the Þrst place an array is used.
Chapter 6 : TFBASIC Internals 167

If an integer value is assigned to a ßoating point variable, the value will
automatically be converted to ßoat before the assignment.

Constants Floating point numbers can be entered by following this rule. The entered
number must contain at least one digit with : 1) a decimal point and/or 2)
the power-of-ten operator E followed by the power of ten value.

Examples : 250., 2.5E2, 2500.0E-1 and 25E1
are all valid representations of 250.0

250, 2.5E2.0, E5 and .E5
are all INVALID ßoating point constants

If a ßoating point constant is assigned to an integer variable, the constant
will Þrst be converted to integer (using the FIX function) and then
assigned to the variable.

Arithmetic
Operators

All but one of the normal TFBASIC arithmetic operators are available for
ßoating point math. The exception is the modulo operator '%'. The
tokenizer checks the two operands of each arithmetic operation. If one is
a ßoat and the other an integer, the integer is Þrst converted to ßoat and
then the operation is performed. The result is considered as type ßoat in
the rest of the expression. For example, in this equation :

5 and 2 are multiplied as integers (and saved temporarily). Then 3 is
converted to ßoat and then multiplied (as ßoating point) by 7.9. Then the
result of 5 * 2 is converted to ßoat and this is added to the (already ßoat)
result of 3 * 7.9 and stored as a ßoat in ßoatValue. If instead we had
assigned the result to an integer variable, the only change would be that
the Þnal result would be converted to integer just before the assignment;
the math operations would not have changed.

Relational
operators

All TFBASIC relational operators are available for ßoating point
comparisons. The precedence is exactly the same, too. As with the
arithmetic operators, the tokenizer checks the two operands of each
compare operation. If one is a ßoat and the other an integer, the integer is
Þrst converted to ßoat and then the comparison is performed. Unlike math
operations, relational operations do not carry the result (or type) of

floatValue! = 5 * 2 + 3 * 7.9

Integer Float

Float
168 TFX-11 UserÕs Guide

TFBASIC Floating Point
comparisons along in complex expressions. The result of each
comparison can only be TRUE or FALSE. For example, in this equation :

2 is converted to a ßoat and then compared with 2.3 and the result, TRUE,
is saved. Then 18 is compared with 20 (as integers) and this result is
TRUE also. Finally, the two TRUE results are ANDed together (the &
operator). This is TRUE and the 'print' will be executed. Beware of
checking for equality in an IF statement using ßoating point operands. It's
possible that the numbers may appear to be equal (using print
commands) but may not truly be equal. You should always test using
greater than or equal or less than or equal.

Conversions There are two kinds of conversions : implicit and explicit. We have
mentioned implicit conversions in the previous discussions. If two
operands are of different types and one is converted to the other's type,
this is an implicit conversion. TFBASIC only makes implicit conversions
from integer to ßoat. Explicit conversions are accomplished with the
FLOAT, INT and FIX functions. You must watch out for overßow and loss of
precision when making explicit conversions. Overßow occurs when a
ßoating point number with a large exponent is converted to integer. For
instance, 1.0E15 cannot be converted to integer because the maximum
integer is approximately 2.1E9. This is considered an error by TFBASIC.
Loss of precision occurs when an integer with too many digits is
converted to ßoating point. Integers in TFBASIC have 31 bits of precision
(plus a sign bit) while ßoating point numbers only have a precision of 24
bits (one bit is an implied 1). TFBASIC does not consider this an error. It
just rounds the ßoating point value to the nearest representation of the
integer that it can.

There is an ambiguous situation. This is when ßoating point values are
stored in binary in the SFLASH dataÞle or in the UEEPROM. Anything
stored there is assumed to be integer. In this case you must use the
ASFLT function to tell TFBASIC to interpret the data as ßoating point. See
ASFLT in the "TFBASIC Command Details" section.

Floating Point
Functions

Here is a list of the functions available for ßoating point operations. The
functions that take a ßoating point argument will automatically convert an
integer to ßoat before executing the function. Functions that take an

if 2.3 > 2 & 18 < 20 print "TRUE"

Float Integer

Bit-wise AND
Chapter 6 : TFBASIC Internals 169

integer argument will signal an error if passed a ßoating point argument
(except for ABS which can take either type of argument)

Print / Store
formats

There are two ßoating point formats for printing or storing data as
characters. Fixed point notation uses only digits and the decimal point.
ScientiÞc notation uses a mantissa (which is really Þxed point) followed by
an exponent (in powers of ten). The format statement in PRINT and
STORE commands for Þxed point is:

#w.dF

where w is the minimum Þeld width of the number (including the sign,
integer part, decimal point and fractional part) and d is the number of
decimal places in the fractional part of the number. For instance, the
number -15.302 would be speciÞed as #7.3F. The format for scientiÞc
notation is very similar to Þxed point:

#w.dS

but here, the minimum Þeld width, w, must also include the exponent
speciÞer. For instance, 2.1345E-3 would be speciÞed as #9.4S. The w

TABLE 3.

Name Description Argument type Return type

abs absolute value ßoat or int ßoat or int

asßt interpret value as ßoat (no
conversion made)

integer ßoat

atn arctangent (in degrees) ßoat ßoat

cos cosine of angle in degrees ßoat ßoat

exp raise e to power ßoat ßoat

Þx ßoat to integer closer to zero ßoat integer

ßoat integer to ßoat integer ßoat

int ßoat to integer less than
argument

ßoat integer

log natural logarithm ßoat ßoat

log10 common logarithm ßoat ßoat

sin sine of angle in degrees ßoat ßoat

sqr square root ßoat ßoat

tan tangent of angle in degrees ßoat ßoat
170 TFX-11 UserÕs Guide

TFBASIC Floating Point
speciÞer is optional (it defaults to a minimum Þeld width of zero) and the d
speciÞer is optional (it defaults to six decimals places) but if d is speciÞed,
it MUST be preceded by the decimal point. Here are some examples of
valid formats and what they produce :

Format for v v = 12.345 v = -0.987654
#10.2F 12.34 -0.99
#7.2S 1.23E1 -9.88E-1
#6.3F 12.345 -0.988
#.5F 12.34500 -0.98765
#0F 12.345000 -0.987654
#0S 1.234500E1 -9.876540E-1

Floating Point
Errors

Errors in ßoating point operations do not stop program execution. Instead,
a bit is set in the read-only variable FPERR. These bits remain set until
you access FPERR by copying it to a variable, printing it or storing it. Then
FPERR is cleared to zero. If you perform a number of ßoating point
operations that produce different errors, FPERR will have more than one
bit set when you Þnally check its value. The drawing to the right shows
which bit is set for each of the four possible ßoating point errors.

 When the value of FPERR is printed, each bit takes on the following
values : bit 0 = 1, bit 1 = 2, bit 2 = 4 and bit 3 = 8. The values are then
added up to produce the Þnal value (just as in any binary number). For
instance, if Underßow, Not-a-Number and Loss of Precision errors occur
before FPERR is printed, the value 13 (1 + 4 + 8) will be printed.

Here is the explanation for each error :

C
an

no
t c

om
pa

re

L
os

s
of

 p
re

ci
si

on

N
ot

-a
-N

um
be

r

O
ve

rß
ow

 e
rr

or

U
nd

er
ßo

w
 e

rr
or

 Bits 31 - 5 not used 4 3 2 1 0

 FPERR variable
Chapter 6 : TFBASIC Internals 171

Underßow. - Bit 0 (weight = 1) is set if a number between +1.175494E-
38 and zero results or a number between -1.175494E-38 and zero
results. This is not representable in single precision. The result is set to
zero.

Example :

floatValue! = 3.0E-28 * 3.1E-15 produce the error
print "result = ", #F, floatValue print the result
print "error = ", FPERR print FPERR value

Printed :

result = 0.000000 value of floatValue
error = 1 value of FPERR

Overßow. - Bit 1 (weight = 2) is set if a number greater than
+3.402823E+38 or less than -3.402823E+38 resulted. This is not
representable in single precision. The result is set to +InÞnity or -InÞnity.

Example :

floatValue! = -2.0E30 * 1.0E20 produce the error
print "result = ", #F, floatValue print the result
print "error = ", FPERR print FPERR value

Printed :

result = -INF value of floatValue
error = 2 value of FPERR

Not-a-Number. - Bit 2 (weight = 4) is set when the ßoating point routine
has no idea of how to represent the result. One way to get this is to take
the square root of a negative number which is an imaginary number. The
result is ßagged as a 'not-a-number'.

Example :

floatValue! = sqr(-4.0) produce the error
print "result = ", #F, floatValue print the result
print "error = ", FPERR value of FPERR

Printed :

result = NaN value of floatValue
172 TFX-11 UserÕs Guide

TFBASIC Floating Point
error = 4 value of FPERR

Loss of Precision. - Bit 3 (weight = 8) is set when an integer greater
than 16777215 or less than -16777215 is converted to ßoating point. This
is because it takes more than 24 bits to represent such a number and
single precision ßoating point has only 24 bits to represent the precision of
a number. TFBASIC will convert the value to the nearest ßoating point
equivalent.

Example :

floatValue! = float(17789321) produce the error
print "result = ", #F, floatValue print the result
print "error = ", FPERR print out FPERR

Printed :

result = 17789319.000000 value of floatValue
error = 8 value of FPERR

Could not Compare. This error occurs when you attempt to compare
any ßoating point value with NaN or if you try to compare +INF with itself
or -INF with itself. NOTE: You can compare +INF with -INF: + InÞnity is
greater than - InÞnity
Chapter 6 : TFBASIC Internals 173

Characters and Strings in TFBASIC

Overview String variables are denoted by adding a $ sufÞx to the name of the
variable. When a string variable is declared, 256 bytes are reserved for it.
The Þrst byte is the length of the string so a string cannot contain more
than 255 characters. 256 bytes are always reserved for the string whether
used or not. Like the integer and ßoating point variables, TFBASIC does
not initialize its string variables. If the programmer does not initialize each
string variable, it may contain from 0 to 255 characters of any type when it
is accessed in the program.

String constants must be enclosed in double quotes. This is different from
earlier versions where single or double quotes could be used. String
constants can be up to 255 characters in length (although the editor only
handles lines 256 characters long). String constants can be used as
arguments to commands and functions and can be assigned to string
variables.

String Functions
in TFBASIC

String functions can be used just as any other function. All other functions
can be used as a variable or argument in another expression. Of course,
functions returning a string can only be used where a string is expected.
Functions returning an integer can only be used when an integer is
expected.

Character
Constants

 You can now use the character ÔAÕ as a synonym for &H41. There can be
up to four characters enclosed in single quotes. The type of the character
constant is a four-byte integer. Characters are shifted into the least
signiÞcant byte of the integer as they are read with unused bytes set to
zero. For instance, ÔAÕ is a character constant equivalent to value 41 H.
ÔABÕ is equivalent to 4142 H. ÔABCÕ is equivalent to 414243 H. ÔABCDÕ is
equivalent to 41424344 H. Character constants can be used anywhere an
integer value is used. These are especially useful when checking if a
character from the UART is equal to one or more characters. For
instance, if you got a character from the UART in variable ch:

if ch = ÔYÕ | ch = ÔyÕ
 print ÒYesÓ
else
 if ch = ÔNÕ | ch = ÔnÕ
 print ÒNoÓ
 endif
endif
174 TFX-11 UserÕs Guide

Characters and Strings in TFBASIC
Special characters can be embedded in a character constant by
preceding a pattern with the escape character Ô\Õ. See the full explanation
under ÒOther String OperationsÓ that follows.

Other String
Operations

String Input. You may input a string to a variable using the INPUT
command as in Input "Enter: " astring$.

String output/storing to dataÞle. PRINT and STORE. Special
instructions for STORE: the string is stored with the length byte Þrst
followed by the string.

String assignment . String assignment from other string variables and
from string constants is performed like any other assignment as in
astring$ = "Test Line".

String concatenation . String concatenation is performed using the Ô+Õ
operator.

Example:

astring$ = ÒabcÓ + ÒdefgÓ + ÒhijÓ
print astring$

output:

ÒabcdefghijÓ

Embedding
Special

characters

Special characters can be embedded within a string constant or a
character constant by including an escape sequence. Each escape
sequence determines the code value for a single character. Escape
sequences are used to represent characters that cannot be otherwise
represented.

There are two forms of escape sequences, numeric and mnemonic. Both
forms start with a backslash. Numeric escape sequences allow you to
represent a single character using a numeric code. Mnemonic escape
sequences represent the character code with a single character related to
its function, such as a \t to represent the TAB character code .

Mnemonic and numeric forms may be used interchangeably. The
mnemonic form for a the tab character is Ò\tÓ and the numeric equivalent is
Ò\x09Ó. Both these sequences generate a single byte code of 09h .The
Chapter 6 : TFBASIC Internals 175

surrounding double quotes are necessary as all escape sequences are
strings.

Example To embed a double quote:

 TFBASIC code:

print ÒHe said,\ÓIÕm not sure\Ó.Ó

Output:

He said,ÓIÕm not sureÓ.

The following code is equivalent to the example code above:

print ÒHe said,\x22IÕm not sure\x22.Ó

and will give the same output, although the code it is far less obvious in
conveying what the programmer was up to. Note also there is no space
after the digits in the second example. The escape sequence terminates
with the last character in the sequence. A space included after the
sequence will show up as a space in the output.

mnemonic
escape

sequences list

Here is a list of mnemonic escape sequences, the ASCII characters they
represent, and their hex character code:

\a BEL alarm, the bell character 07H
\b BS backspace character 08H
\f FF formfeed character 0CH
\n NL newline, the line feed character 0AH
\r CR carriage return character 0DH
\t HT horizontal tab character 09H
\v VT vertical tab character 0BH
\Ó the double quote character 22H
\Õ the single quote character 27H
\\ the backslash character 5CH

numeric escape
sequences list

\xhh where hh is the hex value of the character to
embed - BOTH CHARACTERS MUST BE PRESENT!

NOTE: Octal is not supported.
176 TFX-11 UserÕs Guide

TFBASIC Memory Map
TFBASIC Memory Map

 Mapping of RAM
memory for the

64K program
space (BANK 0)

and variable
storage space

(BANK 1) in the
128K RAM

Interrupt Vectors

TFBASIC

User Program Variables

User Program Code

Hardware Stack

Parameter Stack

FFD6 H

C000 H

1200 H

1300 H

No fixed dividing line

TFBASIC Memory Map

0060 H

0000 H
68HC11 Registers

928 byte on-chip RAM
System Variables

512 byte
Internal

 EEPROM

0400 H

1000 H

using 68HC11 processor

This memory for I/O

1400 H

System Buffers

FE00 H

Boot Loader

User EEPROM

System EEPROM

FEE0 H

FE60 H

Interrupt Translate Table
FDC1H

1000 H

FDFF H

BANK 0BANK 1

@ array variable
storage

(60928 bytes)
Chapter 6 : TFBASIC Internals 177

RAM Memory
Overview

The TFX-11 has 128K of RAM which is split into two 64K banks. Bank 0
contains the executing code as well as the HC11 internal memory,
registers and EEPROM, which includes the UEEPROM. Bank 1 is the
upper 64K of RAM and is devoted to data storage only. Access to this
storage requires using the @ array. Because of hardware addressing
schemes in the HC11 not all of the BANK 1 64K bytes of RAM is
available. The area that is available starts at 1000h and ends at FDFFh, or
60928 bytes. Access to this area requires bank switching which slows
operation slightly. The user need not be concerned with bank switching or
addressing since TFBASIC takes care of all that when the user makes an
assignment statement. The data in memory is referenced by the arrayÕs
index value, which is zero based. Each @ array variable is four bytes, the
typical TFBASIC variable size. There are 15321 4-byte variables, thus the
indices range from 0-15320.

Memory map details by address

0000h-0060h HC11 Hardware Registers. These are the registers of the processor.
These may be read and written directly from an assembly routine
embedded in your TFBASIC program. The register list is available in
TFTools help. For detail information on these registers and what they
control consult the Motorola MC68HC11F1 Technical Data Book and the
Motorola MC68HC11 Reference Manual.

0060h-03FFh System Variables. This is the HC11Õs on board RAM. It is used by
TFBASIC to keep track of its operations. Your code should neither read
nor write within this area. Reading, while generally a benign activity, will
not give you any useful information and future revisions of the software
may modify this area so any code written to depend on values read from
this area is risky at best. Writing to this area is a sure recipe for disaster.

0400h-0FFFh I/O memory. Can be mapped for CSIO1 and CSIO2 chip select
addressing. Refer to the Motorola MC68HC11F1 technical manual for
details. If not used with chip selects it is available as a general purpose
RAM.

1000h-11FFh System Buffers. This area contains the UART buffers and other similar
TFBASIC structures. Keep out.
178 TFX-11 UserÕs Guide

TFBASIC Memory Map
1200h-12FFh Hardware Stack. Do not touch.

1300h-13FFh Parameter Stack. Keep out.

1400h - BFFFh User Program code and Variable area. The lowest part of this area
contains the TFBASIC tokens and other code to be executed by the
TFBASIC token engine. It grows up from the low address. The User
variables grow downward from the location BFFFh.

C000h-FDC0h TFBASIC. This is dedicated to the TFBASIC token engine.

FDC1h-FCFFh Interrupt translate table. The interrupts vectors in the HC11Õs EEPROM
point here. Since this area is located in RAM, these vectors may be
modiÞed for those who might like to write there own ISRs. Not for the
beginner or the faint of heart.

FE00h-FE5Fh EEPROM System Info Area. This area contains conÞguration
information stored at time of manufacture for use by ONSET and
TFBASIC.

FE60h-FEDFh EEPROM User Area. (SEEPROM) This area contains128 bytes
accessed as an array by the VSTORE and VGET commands. They have
been set aside for user parameter storage. The are read and written as
four byte variables indexed from 0 -31.

FEE0h-FFD5h Bootloader. This is the code that loads the program from ßash to RAM
and starts it executing.

FFD7h-FFFh Interrupt Vectors. These are the primary interrupt vectors which point to
the interrupt table in RAM.
Chapter 6 : TFBASIC Internals 179

WhatÕs New and Different in TFBASIC

? variable The ? variable now keeps time in seconds. You can use this value with no
worry of wraparound after 200 days. If you need to time events to
resolutions of 0.01 seconds, use the new stop-watch functions listed in
the Assembly Language Routines section of the manual.

Storing to the
dataÞle

The STORE command no longer uses a variable to point into the dataÞle.
All dataÞle storage is sequential with the dataÞle pointer being kept
internally. The dataÞle pointer is zeroed at launch and can only increment.
Data written to the dataÞle cannot be read back by the program.

GETBYT The assembly language routine GETBYT that gets a byte from the UART
input buffer now does not block and also returns count (in B reg) of
characters in the buffer.

IF and IFF IF and IFF have changed. The old IF syntax no longer works. We now use
the IFF syntax exclusively - BUT - we use the spelling of IF.

Multiple
commands

The ':' operator which allowed you to put multiple commands on a single
line is no longer available. You can now have only one command on a line.

Removed
commands

The following commands have been removed from TFBASIC:

ADLOOP BURST DTOA GET GETS
ITEXT LEFT OFFLD OTEXT PEEKW PEEKL POKEW
POKEL REM RUN RIGHT XSHAKE

String functions The STR command is much more ßexible under TFBASIC. You can create
a string with all the same options available to the PRINT command. But
now you have a string variable that can be printed, stored, split into sub-
strings, appended to other strings or compared with other strings.

When strings are stored, they are stored with the length of the string Þrst
followed by the characters.

PRINT {x,y}
removed

The PRINT command no longer supports the {x,y} format because
TFBASIC does not allow reading from the dataÞle within a program.
180 TFX-11 UserÕs Guide

WhatÕs New and Different in TFBASIC
VAL function
expanded

The VAL function has been split into IVAL (for integers) and FVAL (for
ßoating point numbers). This allows these functions to be used anywhere.
VAL could only be used where it was being asigned to a variable so the
compiler could decide if an integer or ßoating point value was to be
output.

No early wakeup
from SLEEP

The form of SLEEP with early wake-up (if D1 goes high) has been
removed.

ITEXT removed The INPUT command covers most of the functionality of ITEXT but is
more ßexible because it stores to a variable.

DataÞle pointer
variable replaced

 with Notice the addition of the DFPNT read-only variable. This was
necessary because the programmer doesnÕt have control of the dataÞle
pointer as before. The dataÞle pointer is automatically set to zero when a
new program is loaded and is only changed by the STORE command.
This makes accidental overwriting of data impossible - unless the user
loads a new program without off-loading the data Þrst! TFTools gives a
warning if you attempt to do this.

Setting the
BAUD rate

There are two new commands to read (GETBAUD) and change
(SETBAUD) the baud rate of the main UART. The following baud rates are
available: 300, 600, 1200, 2400, 4800, 9600, 19200 and 38400.

Entering
comments in the

code

The only method of entering comments in a TFBASIC program is with the
// operator. You can no longer use the ' at the beginning of a line to make
the rest of the line a comment. Neither can you use the REM command
to enter comments. The semicolon, ;, is still the only way to enter
comments in assembly language code in TFBASIC.

PIN command The PIN command returns weighted values for the various digital I/O pins
when they are high.

 PCLR, PSET and
PTOG limitations

The PCLR, PSET and PTOG commands only work with digital I/O pins 0-
7 and digital I/O pins 16-23. Digital I/O pins 8-15 are input-only pins and
work only with the PIN command.

HYB command
acts differently

The HYB command does not awake once every 10 seconds to check for
an RS-232 BREAK condition at the input to the main UART. You can use
the PIC Interrupt or the IRQ line to awake from HYB early.
Chapter 6 : TFBASIC Internals 181

Timekeeping RTIME and STIME do not access the hardware real-time clock. They
make conversions between the TFBASIC software clock clock (the ?
variable) and the ? array. To access the RTC in the PIC use SETRTC and
READRTC.

UGET/USEND UGET and USEND no longer use the dataÞle for storage. Instead thay
use a string variable. In addition, USEND can now use a string constant
or a string variable. The UGET and USEND baud rate limit has been
increased to 19200.
182 TFX-11 UserÕs Guide

CHAPTER 7
TFX-11 Interfacing
TFX-11 UserÕs Guide

Interfacing to Real World Signals

The Tattletale as delivered is extremely versatile and has many
capabilities, but it is far from a complete instrument. This is where you
come in. In order to make the Tattletale into the device you envision, you
will most likely need to connect external sensors and devices to its
different I/O ports. Understanding of the capabilities and limitations of the
different I/O options available is critical to completing an instrument or
device that works reliably and repeatably.

The following sections review general issues associated with interfacing
your Tattletale to the outside world. We hope this will give you some
background and ideas that will help you make the best choices for your
design. Admittedly this sections is brief - for more detail we recommend
you read some of the books listed as references, especially the Motorola
HC11 manuals and The Art of Electronics by Horowitz and Hill.
184 TFX-11 UserÕs Guide

Digital Input Protection
Digital Input Protection

Digital inputs must be protected from signals that exceed the Tattletale's
internal bus supply levels. The diagrams below show Þve techniques that
protect the inputs from large current spikes which may cause latch-up.

Resistor. The resistor protects the input from surges by limiting the
amount of current that can be injected. A typical value might be 100K.

R - C. Adding a capacitor helps protect inputs from high voltage spikes
caused by electrostatic discharge. The combination of resistor and
capacitor here forms a low-pass Þlter which changes the response to high
speed signals, which include the voltage spikes.

Transistor. This solution isolates the Tattletale's inputs completely from
the source, placing the transistor at hazard (the transistor is a lot easier
and cheaper to replace than the processor that the inputs are connected
to). This design can also perform some level shifting.

VFET. Same as the transistor, but takes much less current. VFETS are
generally harder to obtain, cost a little more, and are more easily
damaged by static, but are the best solution for low power drain and
minimal loading of the signal source.

Opto-isolation. This solution has the advantage of total isolation of both
the supply and the ground of the source from that of the microprocessor.
However, it comes at the expense of substantial current drain, size, and
expense.

R

D
ig

it
al

 In
p

u
t

R

D
ig

it
al

 In
p

u
t

R

R

V+

D
ig

it
al

 In
p

u
t

R

V+

D
ig

it
al

 In
p

u
t

V+

D
ig

it
al

 In
p

u
t

Chapter 7 : TFX-11 Interfacing 185

Digital Output Protection

Digital outputs are just as vulnerable as inputs, and they cannot be driven,
even transiently, with a signal larger than the 'V' supply or lower than
ground. They also have relatively low drive capability and should be
buffered if they are expected to drive substantial loads. Some examples of
output buffering are given in the Þgure below.

100K resistor. The resistor in this Þrst example will provide protection but
very little drive current. It is suitable for connecting to CMOS inputs driven
from a separate supply (where there is a possibility that the supplies won't
track).

VFET driver. The VN0104 is an N-channel DMOS transistor with an on-
resistance of about 4 ohms when the gate is +5 volts and lots of
megohms when the gate is grounded. In the conÞguration shown, it is
suitable for driving small relays or opto-isolators. The VN0104 has a Vds
of 40 volts, so the solenoid can be powered directly from Vbat or any other
convenient source.

Power switch. This last example shows how to conÞgure two VFETs
(one P-channel and one N-channel) to, for example, turn on and off a
separate voltage to switch Vbat to a separate regulator.

R

D
ig

it
al

 O
u

tp
u

t
D

ig
it

al
 O

u
tp

u
t

Load or

V+

pullup

D
ig

it
al

 O
u

tp
u

t

V+

opto-isolatorR

D
ig

it
al

 O
u

tp
u

t

V+
186 TFX-11 UserÕs Guide

Using the Onboard A/D Converters
Using the Onboard A/D Converters

Signal
Conditioning of

Analog Inputs

The analog inputs are designed to handle signals that range from 0 to the
converter's Vcc , typically +5V. This full range ratiometric conversion is
ideal for potentiometer inputs with the wiper attached to the input and the
ends tied to Vsw and ground. Other sensors, such as strain gauges, may
need ampliÞcation before they can be attached to the converter input.

Ratiometric A/Ds The TFX-11 has its negative reference tied to ground and its positive
reference input tied to the converter's +5V positive supply. This means
that if you are measuring your sensor as a fraction of the reference input
(a potentiometer, or a bridge), your conversion will give solid, repeatable
results. Otherwise you may require an external reference.

External
reference

The 12-bit A-D converters will work well with an externally applied
precision reference that is 2.5 volts or greater up to Vdd. The converter's
accuracy depends on the reference voltage and begins to deteriorate with
reference inputs less than 2.5 volts.
Chapter 7 : TFX-11 Interfacing 187

Convert a Bipolar Signal Input to Unipolar

Signals that go
both Positive
and Negative

We have been asked how to interface a bipolar signal to a Tattletale.
Some Tattletales can be made to run in bipolar mode (make sure to add a
Schottky diode between VÐ and ground), others won't. This note shows a
simple way to convert a bipolar input to a positive only signal.

The simple schematic below shows an operational ampliÞer connected in
an inverting conÞguration. Note that this design assumes a relatively low
impedance signal is driving Vin.

Circuit for
Converting

Bipolar to
Unipolar

The only tricky thing we have done is to give a positive bias to the non-
inverting input to the ampliÞer. Remembering that op-amps adjust Vout so
that the inverting and non-inverting inputs have the same voltage. The
equation for this conÞguration is:

Vset = Vin + (Vout Ð Vin) *R1 / (R1+R2)

or, rearranged a little:

Vout = ((R1+R2) * (Vset Ð Vin) / R1) + R1

You can change this into two equations, one for gain, another for offset:

Gain = DVout/DVin = - R2/R1,

 and offset (Vout for Vin = 0):

Offset = Vset * (R1 + R2) / R1

Alternatively:

R2/R1 = Ð Gain

+5

Vset

R1 R2
Vin

Vout

reference
188 TFX-11 UserÕs Guide

Convert a Bipolar Signal Input to Unipolar
Vset = Offset * R1 / (R1+R2)

Example
Application:

Suppose we had a signal that ranged from Ð0.5V to +0.5V, and wanted to
translate that to a voltage we could read with our positive signal only A-D.
We Þrst add a 2.5V reference to the A-D and translate our input to a signal
ranging from 0 to 2.5V. For this we would need a gain of 2.5, and an offset
of 1.25V. Our circuit actually gives a negative gain so that Ð0.5V would
translate to 2.5V, and +0.5V will translate to 0V. From the gain and offset
equations we can Þnd the ratio R2/R1 (2.5) and Vset (0.357V). If we use
standard 1% resistors and the op-amp from Linear Technology we get the
schematic shown below.

Example Circuit
for Converting

Bipolar to
Unipolar

We show a 2.5V reference, also from Linear Tech, fed by a 3K resistor
and divided down to reach the 0.357V. The resistors are not the exact
values that we need to give the gain and offset we wished for, but come
very close. The LT1077's input offset current is 0.25nA max., giving an
offset of about 25mV at the input. This, combined with the input offset
voltage of 40mV max. is still less than 1 LSB of a 12-bit converter.

+5

Vin

To A-D

100K 249K

LT1077LT1009CZ

3K

100K

604K

6

4

3
2

7

Chapter 7 : TFX-11 Interfacing 189

Operational AmpliÞers

For those of you that are not familiar with the terms Òoperational ampliÞerÓ
and Òinstrumentation ampliÞerÓ, this very brief explanation should be
enough to get you started.

Operational
AmpliÞers

The op amp (as they are commonly called) is an ampliÞer with both an
inverting and non-inverting input, and a single output. For our purposes
we will treat it as having an inÞnite gain, and no current ßows through
either input. Three commonly used circuits for op amps are shown in the
Þgure below, with the 'Ð' designating the inverting and the '+' designating
the non-inverting inputs.

The Inverting op
amp

ConÞguration

The inverting circuit has a gain of ÐR2/R1. This makes sense since the op
amp will do what is needed to keep the + and Ð inputs at the same
voltage, and any current ßowing into the input resistor (R1) will also ßow
through the 'feedback resistor' (R2). An input voltage Vi will cause a
current Vi/R1, and cause an output voltage Vo of ÐR2(Vi/R1). Note the
minus sign: the current ßows through R2 away from ground if the current

R1 R2

+
-

input output

R1

R2

+
-input

output

INVERTING

NON-INVERTING

(Vi)
(Vo)

(Vi) (Vo)

+
-

input output

UNITY GAIN BUFFER

(Vi) (Vo)
190 TFX-11 UserÕs Guide

Operational AmpliÞers
through R1 is ßowing toward ground. An op amp is not magic and it
cannot give an output that is larger than its positive supply or lower than
its negative supply. The Tattletale has a regulated 5V, but its negative
supply is ground, so most applications will supply the op amp with ground
and +5V. This makes it impossible to use the inverting circuit as drawn,
unless the input is a negative voltage.

Advantages: R1 protects input from external voltage

Disadvantages: To get a large gain, R1 must be small, loading the input.

Requires the input signal be negative for the positive signal needed by the
Tattletale.

The Non-
inverting op amp

ConÞguration

Following the same analysis we did for the inverting conÞguration, we Þnd
that the gain of the circuit is (R1+R2)/R1 for the non-inverting circuit. In
this case we are limited to positive inputs, since the Tattletale has no
negative supply.

Advantages: High input impedance (will not load down your signal
source).

Disadvantages: Takes a positive input only. To handle a negative input in
a Tattletale application would require adding a negative supply to the
Tattletale

Unity gain buffer
op amp

ConÞguration

The analysis for this conÞguration is simple. Since one of the fundamental
operational rules of op-amps states that the output will do all it can to
make the + and - inputs equal to each other, we can see that the input will
follow the output. Since the signal is directly into the + input, the
impedance is essentially inÞnite and the output impedance is zero.
(theoretically of course!). Again we are limited to positive inputs, since the
Tattletale has no negative supply. Real op amps will have real values for
input and output impedance, as well as potential limitations when
attempting to drive a signal near V- supply or the V+ supply.

Advantages: High input impedance (will not load down your signal
source). Makes an excellent signal buffer. Low output impedance is
appropriate for driving A/D inputs.
Chapter 7 : TFX-11 Interfacing 191

Disadvantages: Takes a positive input only. To handle a negative input in
a Tattletale application would require adding a negative supply to the
Tattletale. Signal may be distorted near the rails.

The Real World As magical as they appear to be, op amps are not perfect. Some
limitations are described below.

Op amp
limitations

Current drain. In your Tattletale application you won't want to use any
more power than needed. Check the current drain specs on the part you
choose.

Supply voltage. Not all op amps work with supply voltages of +5 and
ground. In some applications you may even want your circuit to work while
the Tattletale is running from 3 volts.

Max output swing. Most op amps can only drive to within about a volt of
their positive supply, others to only about a volt of their negative supply.

Input voltage range. Not all op amps are pleased with inputs close to the
supply lines; some will work with input voltages below ground. Don't be
confused by the inverting conÞguration described above. In that circuit the
input voltage is always at ground.

Input offset voltage. The input offset voltage can be understood as the
voltage difference between the positive and negative inputs needed to
make the output voltage zero. Ideally this should be zero; in reality many
op amps have input offsets of 10mV or more. This offset will appear as an
error at the output equal to the input offset times the gain of the circuit.

Input offset current. Many op amps have FET inputs that take almost no
current at the input, but some can have sizable currents ßowing
(nanoamps) into or out of the inputs. This can lead to sizable errors if your
input resistor is a large value.

That's not all, but should be enough to give you some idea of what to look
for in op amp data sheets.

Op Amps we
have used:

We will show some of our biases by giving you short descriptions of three
op amps we like. Note that each has its own strengths.
192 TFX-11 UserÕs Guide

Operational AmpliÞers
LT1077, 1078,
1079

Single, dual and quad ampliÞer from Linear Technology (408) 432-1900.
This part has lovely current drain, input voltage range and input offset
voltage specs.

¥ Current drain: 40mA typical for each ampliÞer (mA =
microamp, a millionth of an amp)

¥ Supply voltage: 3 volts minimum
¥ Max output swing: ground +6mV to positive supply Ð1 Volt

(mV= millivolt, 1/1000V)
¥ Input voltage range: ground Ð5V to positive supply
¥ Input offset voltage: 30mV typical (mV = microvolt, a millionth

of a volt)
¥ Input offset current: 0.25nA max. (nA = nanoamp = a milli-

micro amp)

TLC1078 Dual ampliÞer from Texas Instruments (800) 232-3200. Note the superb
input offset current speciÞcations.

¥ Current drain: 15mA typical for each ampliÞer
¥ Supply voltage: 1.4V minimum
¥ Max output swing: ground to positive supply Ð1 Volt
¥ Input voltage range: ground Ð0.2V to positive supply Ð1 Volt
¥ Input offset voltage: 160mV typical
¥ Input offset current: 0.1pA max. (pA = picoamp = a micro

micro amp)

ALD1704, 1701,
2701, 4701

Single, dual and quad ampliÞer from Advanced Linear Devices (408) 720-
8737. This part drives line to line.

¥ Current drain: 120mA typical for each ampliÞer
¥ Supply voltage: 2.0V minimum
¥ Max output swing: ground to positive supply Ð1 Volt
¥ Input voltage range: ground Ð0.2V to positive supply Ð1 Volt
¥ Input offset voltage: 2mV for the premium version
¥ Input offset current: 25pA max. (pA = picoamp = a micro

micro amp)
Chapter 7 : TFX-11 Interfacing 193

NOTE. If you need the speciÞcations for gain-bandwidth product, noise
characteristics, stability, offset drift, temperature coefÞcients or output
drive characteristics, refer to the data sheets from the manufacturer. We
do not supply them in this manual. These and other parameters are
important in some applications, but we don't have the space to cover
everything.
194 TFX-11 UserÕs Guide

Instrumentation AmpliÞers
Instrumentation AmpliÞers

What if your sensor provides two outputs (like a bridge circuit)? An
operational ampliÞer has both an inverting and a non-inverting input, but
one is needed to set the gain of the circuit. You can build an
instrumentation ampliÞer from two operational ampliÞers and a small pile
of precision resistors using the circuit below:

This circuit has a gain G = (R1+R2)/R1, and works over a range of input
voltages that go from ground to 'Max positive output' * R2/(R1+R2).

LT1101
Instrumentation

ampliÞer:

Linear Technology's LT1101 packages this all in one 8-pin part and can be
set to a gain of 10 or 100 with no external parts.

¥ Current drain: 75mA typical
¥ Supply voltage: 2V minimum
¥ Max output swing: ground +4mV to positive supply Ð1V
¥ Input voltage range: ground +70mV to positive supply Ð2V
¥ Input offset voltage: 50mV typical
¥ Input offset current: 8nA max.

R1R2

+

Ð

Ðinput
output

R1

R2

+

-
+input
Chapter 7 : TFX-11 Interfacing 195

196 TFX-11 UserÕs Guide

CHAPTER 8
TFX-11 Hardware Reference
TFX-11 UserÕs Guide

TFX-11 Hardware Reference

Overview of I/O The TFX-11 provides up to 19 A/D converter input and up to 24 I/O pins.
Eight I/O pins are shared between digital input functions and 8-bit A/D
functions. Therefore, if all the 8-bit A/D pins are used for digital input, then
only the 11 12-bit A/D inputs are left. There a 16 pins available
exclusively for digital I/O. Eight are located on the HC11, and eight are
located on the PIC. Because of their placement each set has slightly
different operational characteristics. Since the HC11 is the primary
controller for the TFX-11, TFBASIC has direct access to the HC11 port I/
O pins. In contrast the HC11 uses synchronous serial communications
with hardware handshaking to operate on the PIC I/O pins.

Selecting Digital
I/O pins

Therefore it is recommended that all high speed bit twiddling be
performed using the eight bit port on the HC11, while the PIC I/O be used
for slower speed operations.

A/D input choices The 8 bit A/D converter is internal to the HC11. These A/D input pins can
also double as digital inputs. The 12-bit converter is a separate device
and communicates with the HC11 via the SPI bus. Here the choice of
which inputs to use is mainly based on resolution required. The 8 bit
converter does allow you to sample more quickly due to its lower
resolution and its registers being internal to the HC11.

Attaching
devices to the

bus

Also available are some of the HC11 bus signals - the data lines, chip
selects and other qualifying signals for attaching external memory-
mapped items to the HC11. The two chip selects, CSIO1 and CSIO2, may
be programmed to map into speciÞc addresses, simplifying the addition of
memory mapped I/O devices. (see the TFBASIC memory map in this
manual and the HC11F1 Technical Data Book for details).

TFX-11
Reference
Schematic

The simpliÞed schematic on the following page identiÞes only the major
components and external connections needed to properly interface
additional hardware to the TFX-11
198 TFX-11 UserÕs Guide

TFX-11 Hardware Reference
Chapter 8 : TFX-11 Hardware Reference 199

TFX-11 Board Dimensions
200 TFX-11 UserÕs Guide

TFX-11 Board Dimensions
Pin outs as
viewed from the

top (pins pointing
toward you) of

the TFX-11

The TFX-11 pins come out the top of the board. When the TFX is
connected to the PR-11 prototype board the components on this top
surface are inaccessible. Note that the two boards mate face to face,
therefore the pinouts of the TFX-11 and the PR-11 are mirror images
when viewed from each boardÕs top.
Chapter 8 : TFX-11 Hardware Reference 201

The PR-11 Prototype Board

Parallel Cable
Connector

Serial Cable
Connector

2.5mm Jack
(uncommitted)

CR-2032
Backup Battery
holder

9V Battery
Connector

2.5mm Jack
(uncommitted)

(7) Pad Sets

Optional power connector
202 TFX-11 UserÕs Guide

The PR-11 Prototype Board
Overview The PR-11 Prototype board was designed to support many different
conÞgurations and applications. It carries Power, Serial and Parallel jacks
as well as pads laid out to take common connectors which you may
purchase separately and install yourself as necessary.

The PR-11 board outline is designed to Þt inside a standard SERPAC A-
279V plastic enclosure, included in the deluxe development kit. The case
comes with the parts needed to handle the basic PR-11 board
conÞguration as delivered. Depending on what optional connectors you
install you may have to modify the case to access them.

The standard conÞguration includes a 9V battery connector for power, a
9-pin mini-din connector to mate to the Parallel cable, and a 3.5mm stereo
phone jack to mate to the serial cable. The CR2032 backup battery
holder is mounted on the underside of the PR-11 board. When the TFX-
11 is plugged into the PR-11 board , the PR-11 board provides all the
necessary connections to fully operate the TFX-11.

Power
Connections

Main power is connected through a 9V battery connector. The fully
assembled case has a 9V battery compartment to house the battery if so
desired.

Optional Power
jack

Another set of pads are on the board to allow mounting of a jack (KYCON
KLD-0202-A) compatible with standard wall mount DC power supply
modules. The thru holes for this connector are used to attach the tie-wrap
used as a strain relief for the 9V battery connector. This tie-wrap must be
removed to install the jack. When this connector is used the 9V battery
compartment will no longer Þt inside the case. The mating connector of
the DC power supply must have a 2.1mm inside post and where the
inside post must be ground. BE SURE THE POLARITY IS CORRECT
BEFORE CONNECTING!

The Backup
Battery

The Backup battery is not a requirement for operation of the TFX-11, but
can be useful in some applications. As long as the main power is attached
the backup battery is out of the circuit. (NOTE: The backup battery has a
1M resistor across it. This is to allow proper operation with the battery
removed.) The backup battery allows retention of the clock time and data
in the 128K ram and internal to the HC11 and PIC when main power is
removed. Data stored in the SFLASH is not affected, but the pointer to the
end of data in the SFLASH is lost.
Chapter 8 : TFX-11 Hardware Reference 203

Communications
Connectors.

A 9 pin mini-din (LZR Electronics MDJ9PS) and an 3.5mm stereo phone
jack (Shogyo International SJ-0375-3RT) are mounted for connecting to
the host PC using the Onset cables.

Optional 2.5mm
stereo phone

jacks

Along one side of the PR-11 board are seven sets of pads designed to
accept either 2.5mm stereo (Shogyo SJ-0252-3RT) or mono (LZR
Electronics Inc. LZR-RL254) phone jacks. All seven are uncommitted;
that is, the connections to the jackÕs internal contacts are brought out and
terminate next to the connector. It is up to the user to determine what
jumpers get installed based on the application and the choice of
connector used.

Tutorial Area Included on the PR-11 breadboard are pads already laid out and ready to
accept a thermistor, resistor and FET that form a simple but accurate
temperature measurement circuit.

Designing a
custom

interface board
for the TFX-11

Some of you may want to design your own mating circuit board in place of
the PR-11. The required terminations for the 8 bit A/D subsystem as well
as speciÞc connector pin assignments are summarized in the table below.

TFX-11 Pin PR-11 Termination Comments

B5 MINI DIN pin E2 Parallel Port connector

B6 MINI DIN pin E9 Parallel Port connector

B7 MINI DIN pin E1 Parallel Port connector

B8 MINI DIN pin E7 Parallel Port connector

B9 MINI DIN pin E3 Parallel Port connector

B10 MINI DIN pin E8 Parallel Port connector

B11 MINI DIN pin E4 Parallel Port connector

B3 3.5mm jack RS232 output

B4 3.5mm jack RS232 input

A35 +5V 8 bit A/D reference connection

A34 GND 8 bit A/D reference connection

B24 Backup Battery + Ltihium battery holder

B25 9V battery + Battery power input
204 TFX-11 UserÕs Guide

The PR-11 Prototype Board
Pinouts as
viewed from the
top of the PR-11

(socket strips
point toward

you).
Chapter 8 : TFX-11 Hardware Reference 205

Explanation of Connector Pin Functions

Overview The following paragraphs explain in detail the functions associated with
the pins brought out to the PR-11 prototype board.

Important Note
for those who

want to design
there own

interface board

There are connections made on the protoboard that are required for
proper operation of the TFX-11Õs eight bit A/D converter. If you design
your own board you should include these connections or a suitable
alternative to assure proper operation even if you donÕt use the 8 bit A/D.
If these pins are left unconnected the internal 8-bit A/D will deÞnitely not
operate properly, and may cause other anomalies.

Onset will supply drawings to assist you in designing a mating PC board.
Please contact Onset technical support for details.

UDO (B1). The output of the hardware UART at TTL levels. The signal is
inverted compared to the RS-232 (SDO) output.

UDI (B2). The input to the hardware UART at TTL levels. The signal is inverted
compared to the RS-232 (SDI) input.

SDO (B3). The output of the UART at RS-232 levels. The signal is inverted
compared to the TTL (UDO) output.

SDI (B4). The input to the UART at RS-232 levels. The signal is inverted
compared to the TTL (UDI) input.

HOSTREQ (B5). Driven LOW by the Host PC when requesting attention. Bringing
this line low will halt a running TFBASIC program. Not meant as a user
function.

PPMOSI (B6). Communications line from Host PC to TFX-11. Not meant as a user
function.

PICACK (B7). TFX-11 signal that it has recognized the HOSTREQ. Not meant as
a user function.

PPSCLK (B8). Host to TFX-11 communication clock. Not meant as a user function.
206 TFX-11 UserÕs Guide

Explanation of Connector Pin Functions
PICHSHK (B9). TFX-11 signal to host that it is ready for new command. Not meant
as a user function.

PPMISO (B10). Communications line to Host PC from TFX-11. Not meant as a
user function.

GND (B11). System digital ground.

LED (B12). Output from external activity LED. When oscillating the PIC is
active, when not the PIC is sleeping.

RB7-RB0 (B13-B20). Highest numbered block of the 24 digital I/O pins. RB0=I/O16,
RB7= I/O23. These are on the PIC processor and since they require
HC11 to PIC communications rather than direct HC11 port access they
are not suitable for high speed toggling such as might be used in tone
generation. Use PA0-PA7 instead.

MRESET (B21). Taking this LOW will perform a power-on reset of the TFX-11.

VCC (B22). 5VDC coming from the main LM2936 linear regulator. A maximum
of 50mA is available from this regulator, but the amount available for your
project will vary depending on the activity of the HC11 and its peripherals.
The TFX-11 should draw typically 3.5mA at idle to a peak of about 25mA
when making conversions, allowing about 25 mA for your projects. This
regulator has short circuit protection, reverse battery protection, and
thermal shutdown. Take care not to exceed the power dissipation
speciÞcation (which changes with ambient temperature and battery
voltage) or the TFX-11 will go into thermal shutdown, temporarily halting
operations until it recovers. For more detailed information refer to the
LM2936 data sheet, supplied in Adobe Acrobat PDF format, on the
TFTools/TFBASIC software distribution disk.

GND (B23). System digital ground.

LITH (B24). V+ side of CR2032 Lithium backup battery.

VBAT (B25). Main power input to the TFX-11. This input can be in the range
5.5V to 18V, but care must be taken so as not to exceed the maximum
Chapter 8 : TFX-11 Hardware Reference 207

power dissipation that would result in thermal shutdown of the regulator.
See the LM2936 data sheet for more information.

GND (A1). System digital ground.

VCC (A2). See VCC (B22) above.

D0-D7 (A3-A10). (See PR-11 drawing for exact pin to signal correspondence).
When TFBASIC is running the HC11 is in expanded operating mode so
these lines default function is as the external data bus. These lines may
be used with signals CSIO1,CSIO2, A0, R/W, and E to add memory
mapped external devices.

R/W (A11). Indicates direction of transfers on external data bus.

E (A12). This is the E clock output. It is crystal frequency divided by 4.
When the E-clock is low the HC11 is processing. When high there is a
data access taking place.

CSIO1 (A13). First user available chip select that is mapped to range 400h-7FFh
when enabled. Default for the TFX-11 is disabled. Requires
understanding of the HC11 and assembly language programming to
access. See the MC68HC11F1 technical reference for more information.
NOTE: Be aware this line may be used in the future by ONSET to attach
memory expansion devices to the TFX-11.

IRQ (A14). Falling edge sensitive, maskable interrupt to the HC11 CPU. Set
to edge sensitive at reset. May be used for early wakeup from HYB.
Sensitivity may not be changed by user. Not used by the TFX-11
operating system. Requires understanding of the HC11 and some
assembly language programming to access. See the MC68HC11F1
technical reference for complete information.

PGO/EOC (A15). Used to read the 12-bit A/D converter end of conversion signal.

CSIO2 (A16). Second user available chip select that is mapped to range 800h-
FFFh when enabled. Default for the TFX-11 is disabled. Requires
understanding of the HC11 and assembly language programming to
access. See the MC68HC11F1 technical reference for more information.
208 TFX-11 UserÕs Guide

Explanation of Connector Pin Functions
NOTE: Be aware this line may be used in the future by ONSET to attach
memory expansion devices to the TFX-11.

A0 (A17). Lowest external address line. Used to qualify reads and writes for
some peripherals attached to the data bus.

PA0-PA7 (A18-A25). Digital I/O pins corresponding to pins I/O0-I/O7

AD8-0, AD8-7 (A26-A33). 8 bit A/D converter inputs. These pins also act as digital
inputs when used with the PIN command. The corresponding PIN
parameters are I/O 8 to I/O 15, and the corresponding CHAN parameters
are 11-18. Note that AD8-1 thru AD8-6 do not necessarily match
connector pins A27-A32 in sequence. Refer to the connector reference for
the PR-11 or TFX-11 boards for the correct sequence.

VRL (A34). Provides the LO reference voltage for the HCll on-board 8-bit A/D
converter. This pin is NOT connected unless plugged into the PR-11
breadboard. The PR-11 has a jumper that normally connects this signal to
ground. The jumper may be cut if you want to connect it to another
reference. Bypass capacitors may be required to minimize noise that will
affect A/D accuracy.

VRH (A35). Provides the HI reference voltage for the HCll on-board 8-bit A/D
converter. This pin is NOT connected unless plugged into the PR-11
breadboard. The PR-11 has a jumper that normally connects this signal to
VCC. The jumper may be cut if you want to connect it to another
reference. Bypass capacitors may be required to minimize noise that will
affect A/D accuracy.

AD12-0, AD12-10 (A36-A46). 12 bit A/D converter inputs. The corresponding CHAN
parameters are 0-10

REF- (A47). Provides the LO reference voltage for the 12-bit A/D converter.
This pin is connected to ADGND via a jumper on the TFX-11 main board.
The jumper may be cut if you want to connect another reference.

REF+ (A48). Provides the HI reference voltage for the 12-bit A/D converter. This
pin is connected to ADVCC via a jumper on the TFX-11 main board.
Chapter 8 : TFX-11 Hardware Reference 209

ADVCC is the regulator that is the dedicated supply for the 12-bit A/D
converter. The jumper may be cut if you want to connect an absolute
reference.

ADGND (A49). Analog ground connection for the 12-bit A/D converter input
signals. To avoid introducing noise in the A/D conversions DO NOT attach
any other grounds to this point

ADVCC (A50). Analog reference for the 12-bit A/D converter input signals. To
avoid introducing noise in the A/D conversions DO NOT attach any
unrelated device grounds to this point.
210 TFX-11 UserÕs Guide

TFX Timekeeping
TFX Timekeeping

RTC Storage
Structures

TFXBASIC has two structures for holding time related information - the ?
variable and the ?() array.

The ? variable. The ? variable consists of 4 bytes and increments every
second.

The ?() array . The ?() array is a separate structure of 7 four-byte
integer variables with ?(0) holding seconds (0-59), ?(1) holding minutes
(0-59), ?(2) holding hours (0-23), ?(3) holding days (0-31), ?(4) holding
months (1-12), ?(5) holding years (1980-2040). The ?() array is only
updated by invoking the RTIME command or by directly modifying it with
an assignment to one or more of the elements. ?(6) contains the current
ticks count (0-99). Ticks occur a the rate of 100 per second and cannot
be changed.

Using these predeÞned structures simpliÞes date and timekeeping and
time-based math calculations. Note that the ?(5), the year array element,
contains all four signiÞcant digits of the year, not just the last two, to allow
simpler and error free date calculations.

Two separate
Crystals

Because the PIC and HC11 do not share clock crystals it is possible that
the time kept in each processor will drift from the other, therefore a clear
understanding of how the two interact is necessary to insure critical timing
sequences are not compromised.

Clock Resolution The PIC keeps time in one second increments. TFBASIC on the HC11
keeps time to 1/100 second. Because of the HYB overhead it is
recommended that all intervals below 5 seconds only be handled by
SLEEP, and intervals longer than 5 seconds be handled by HYB. Where
interval timing must be precise within a sub-second then SLEEP must be
used.

PIC as primary
RTC

Since the PIC clock crystal is always running, even in HYB mode, the PIC
processor is considered the principal RTC on the TFX-11. At Program
Launch the Host PC copies its current system clock time, in seconds, to
the PIC. When the PIC starts the HC11 by removing it from RESET the
PIC time is copied to the TFBASIC ? variable by the TFBASIC startup
code, with tenths of seconds being initialized to 0. After this initialization
Chapter 8 : TFX-11 Hardware Reference 211

there is nothing explicitly built into the TX to keep the two clocks
synchronized, but since the commands available between the PIC and
TFBASIC use calculations based on relative time, there is no problem.

When an RTIME or STIME command is executed in TFBASIC it only acts
locally, that is it does not affect and is not affected by the time in the PIC.
After TFBASIC initialization all timekeeping data is kept locally on the
HC11 and it is updated locally, unless otherwise commanded from the
TFBASIC program.

Timing
dependencies

SLEEP commands. All SLEEP clock timing is relative to the TFBASIC
periodic timer interrupt on the HC11. TFBASIC keeps a separate SLEEP
timer which, while clocked from the same HC11 periodic interrupt, does
not share count values with the ? variable, and therefore is not affected
by the RTIME or STIME commands. It can only be modiÞed by a SLEEP
x command.

HYB commands. Since the HC11Õs clock is stopped during HYB,
absolute HYB timing is dependent on the PICÕs clock crystal. Wakeup
from HYB timing is calculated as relative time; as seconds from the
current value in the HC11 clock to the requested wakeup time. This value
is transferred to the PIC added to the current PIC time to calculate the
alarm wakeup time. The HC11 stores locally this offset count as well as
the time it entered HYB. When the PIC wakes it up TFBASIC gets the
current time. from the PIC Assuming no drift between the two crystals,
this technique will wake it up at the exact time requested, with the ?
variable containing the correct time for TFBASIC, even if the times on the
PIC and HC11 differ. Since the HC11 has been stopped during HYB the
only valid time available is the PIC time in seconds.

Clock Drift Any drift error during a HYB period depends on the PICÕs crystal
oscillator. Any drift error during TFBASIC operation is dependent on the
HC11 crystal.
212 TFX-11 UserÕs Guide

TFX-11 Data Storage Options
TFX-11 Data Storage Options

The TFX-11 offers some different data storage options, each designed to
suit a particular purpose best. Different methods of write and read access
deÞne appropriateness for using each of these different storage areas.
The major on-board memory areas are listed below:

¥ Program and Variables memory, bank 0 of the 128K static RAM

¥ @ array memory, bank 1 of the 128K static RAM

¥ UEEPROM, 128 bytes User EEPROM inside the HC11

¥ 472K bytes Serial ßash EEPROM (SFLASH)

Refer to the TFBASIC memory map in Chapter 6, TFBASIC Internals, for
a graphical representation of the descriptions that follow.

Program and Variables memory, bank 0 of the 128K static RAM.
This is the default RAM bank that contains the running TFBASIC
program, token interpreter, and variable storage space. It is TFBASICÕs
prime operating area. User storage in this area is accessed directly
through TFBASIC variables. The total area available for storage is
reduced by the overhead used by the token interpreter and the storage
used by the userÕs program tokens.

This memory is battery-backed and retains its information as long as the
backup battery is not removed. This memory is not accessible directly via
the parallel port. Any data stored here must be transferred to the SFLASH
before off-load or transferred directly out the UART via a running
TFBASIC program.

@ array memory, bank 1 of the 128K static RAM. This area of RAM is
set aside for random access data storage. It is predeÞned as a single
array containing 15232 elements, called the @ array. Each element of
this array is a standard four byte variable. This section of RAM is easily
accessible; any assignment to or from an @ array variable transfers the
data, automatically performing the bank switching. This area is NOT
automatically initialized on startup. As it is battery-backed, it can retain its
contents from one reset to another, as long as the backup battery is not
removed.
Chapter 8 : TFX-11 Hardware Reference 213

This memory is not accessible directly via the parallel port. Any data
stored here must be transferred to the SFLASH before off-load or
transferred directly out the UART via a running TFBASIC program.

@ARRAY limitations. The @ARRAY is mainly meant for use as a
dataÞle. Unlike the SFLASH dataÞle, which is write only, the @ARRAY
may be written and read. It is battery-backed and can be considered non-
volatile as long as the backup battery is viable. @ARRAY variables
CANNOT be used as the following:

¥ FOR loop variable

¥ RTIME argument

¥ STIME argument

¥ READRTC argument

¥ SETRTC argument

¥ CALL return variable

¥ INPUT variable

¥ ONERR return variable

This should present no problem as there is plenty of RAM available for
regular variables.

UEEPROM, 128 bytes User EEPROM (inside the HC11). This is
located in a section of the internal memory map of the HC11. It is read,
erased and written in units of four bytes, the standard TFBASIC variable.
As with all EEPROMs any one location can only be written a limited
number of times (approx 10,000) before it fails. This is in contrast to
reads, which are unlimited.

The most appropriate use for this limited memory is to store conÞguration
information or sensor calibration parameters.These values would be
written once when the instrument is calibrated or setup and then could be
read any number of times as necessary. This technique allows a single
program to compensate for sensor or external hardware variations across
otherwise identical instruments.

These 128 locations are divided into 32 groups of four making the integer
(or ßoat) the default storage unit. They are accessed only by the TFBASIC
commands VGET and VSTORE, with valid locations being 0-31. These
214 TFX-11 UserÕs Guide

TFX-11 Data Storage Options
locations are totally non-volatile - they will remain even if all power is
removed.

472K bytes Serial ßash EEPROM (SFLASH). This storage is in an
external serial linked ßash EEPROM, or SFLASH. This SFLASH can be
read,written or erased directly by the Host computer via the parallel port,
but it is write only to the TFBASIC program. The SFLASH is written to
using the STORE command. After each write to the SFLASH, TFBASIC
updates an internal pointer variable to point to the next location data can
be written to. The only way to erase this memory is to perform a
successful OFFLOAD from the Host computer, after which you will be
prompted ÒDo you really want to erase this data?Ó This is to help protect
the data from accidently being corrupted or erased by a programming
logic, accidental restart, or other error.

Minimum
SFLASH dataÞle

storage

The SFLASH holds both the program and the data. Therefore the amount
of data storage is impacted slightly by the size of the program. Given the
largest program there will be a minimum of 405k for data. Use the DFMAX
read-only variable from inside your program to report the exact amount
available.

This storage is best suited to holding data that do not need to be
referenced once written.

This storage is non-volatile. The information written into it will remain
intact even if all power, including the battery backup power, is removed.
Even if the other components are not functioning, it may still be possible
to read out the data from the SFLASH.
Chapter 8 : TFX-11 Hardware Reference 215

TFX-11 Hardware Description

Functional
overview of the

TFX-11

The TFX-11 contains two processors, 128K static RAM, 472k ßash
EEPROM (SFLASH), and a parallel port and an RS232 serial port for
development/communications interface. This section will attempt to
provide a general overview of the relationships, responsibilities, and
interactions of the major subsystems.

The architecture of the TFX-11 includes an HC11 with 128K of RAM,
64K of which is used for the TFBASIC token engine, the users program,
and user variable storage. The TFBASIC program is stored complete in
ßash as an executable image. This image is created using TFTools on the
host computer. It is up to the TFTools host software to put together the
image which will be loaded by the HC11 from the ßash into its RAM for
execution. The initial step is for the host computer to load this image
directly into the SFLASH via the parallel port connection. The SFLASH
provides permanent (until deliberately erased and rewritten) storage of
the program and prepares the way for the next step, which is having the
HC11 copy the image into RAM. Once loaded into the RAM the PIC
controls start of the program because it controls the HC11Õs RESET line.
The PICÕs timing functions can include a delayed start or periodic
wakeup and shutdown of the HC11, providing the very lowest power
modes when the HC11 is shutdown .

Fundamental to the design of the TFX is itÕs clean slate (64K RAM) at
RESET. Resident on the host computer, TFTOOLS formats (compiles/
assembles) both the userÕs code and a copy of the token engine into an
image which is uploaded to the TFX for execution. The PIC controls
RESET and at power on or Launch instructs the HC11 to load this
program in the ßash and then RESETs the HC11 to start to execute this
code.

TFX-11 in
Operation

Both the HC11 and the Host PC may become the master of operations,
but not simultaneously. The following discusses each as master
separately, as well as the supervisory role of the PIC.

Host computer in charge. Under the control of the host computer the
devices active are the PIC and the SFLASH. Through the signal
HOSTREQ the PIC will detect that the TFX is connected to the host
interface and wants service. At this point the PIC commands an orderly
shutdown of the HC11. When this process has been completed the PIC is
216 TFX-11 UserÕs Guide

TFX-11 Hardware Description
slave to the host computer along with the SFLASH and the A/D. When
the PIC has completed conÞguring itself as slave, it asserts the SFLASH
CS and responds to HOSTREQ with a PICACK. The PIC has now given
control to the HOST and set up the bus so that the default communication
from the HOST is with the SFLASH. The host is not required to
communicate to the PIC for any SFLASH related activities, READ,WRITE,
or ERASE. If the HOST wants to talk directly to the PIC or the A/D it must
grab the attention of the PIC by toggling the HOSTREQ line. The PIC
continually polls the state of the HOSTREQ line, which acts a as a PIC
CS. If it changes state it can mean only one of two things - either the
HOST is no longer requesting control or the HOST is requesting
communication with the PIC. If the HOSTREQ remains de-asserted for
more than 2 seconds it is understood to be a disconnect - otherwise the
PIC disables all CS on the bus and waits for a command from the HOST.

Communications to the PIC from the host include functions such as
reading and setting the time, setting an alarm start time or periodic sleep/
wake cycle time, getting status information such as serial number and
Model number of the board and version information for the PIC Þrmware.
The primary use of this interface the off-loading the SFLASH data and
uploading new program images to the SFLASH using TFTOOLS. The
HC11 is completely shutdown while the HOST is active.

PIC processor in
charge.

When the HOST parallel interface is disconnected the PIC assumes the
position of supervisory controller and holds the HC11 in RESET until the
PIC Þnishes setting up the HC11Õs environment. In this state the PIC can
only communicate with the HC11 via the SPI, and the HC11 must be
running for those communications to take place. On power up the PICÕs
tasks include; detecting if the HOST parallel interface is connected and if
not, controlling the orderly power up of the HC11. When the PIC
determines the HOST interface is not connected releases the reset it
holds on the HC11so it can start running in expanded mode. At this point
the PIC becomes a slave to the HC11.

HC11 in charge When the HC11 is up and running it is the main processor, with all its
program information in RAM. In this mode it is running almost exactly like
any of the previous Tattletales, with the PIC acting primarily as the RTC
and wakeup alarm.

The PIC as RTC
and Low Power

controller.

With the HC11 in charge the PIC still has the power to take back control in
response to external events (i.e. the interface attached) or as necessary
to control low power mode requests from the HC11. The HC11 can
Chapter 8 : TFX-11 Hardware Reference 217

command the PIC (via the SPI bus) to set an alarm wakeup time, and
then the HC11 can put itself into STOP mode. When the PIC alarm times
out it uses the XIRQ line to interrupt the HC11 to wake it up, and, after a
brief handshake with the PIC over the SPI, the HC11 resumes processing
from where it left off. If the handshake does not take place the PIC will
assume an operational problem with the HC11 and place it in reset.

Low Power
operation :

This can be initiated by the TFBASIC program requesting a HYB interval.
The PIC sets its alarm timer to the wakeup time (one second resolution)
and when the PIC timer times out the PIC will use XIRQ to awaken the
HC11. While in HYB only the PIC is active. HALT will put the TFX-11 in
this same low power state, but it does not provide an automatic wakeup.
218 TFX-11 UserÕs Guide

TFX-11 Hardware Description
Serial Cable
Pinout

Parallel cable
Pinout

PIN 1

PIN 9

PIN 5 GND
(TIP)(RING)

TattletaleP.C.

PIN 6

TXDRXD

1
2
3
4

5
6
7
8

9

RXD
TXD
DTR

DSR
GND

RTS
CTS

TIP
RING

GND

NC

NC

PIN 1 PIN 13

PIN 14 PIN 25

PIN 7

PIN 2

PIN 6

PIN 9

SCLK
UNUSED IN

MISO

PICHNDSHK
PICACK

UNUSED OUT
HOSTREQ

GND

MOSI 4
1
9
6

7
8
3
5

2

2
9

10
11

12
15
16
17

18-25

PIN 1

PIN 3
Chapter 8 : TFX-11 Hardware Reference 219

220 TFX-11 UserÕs Guide

CHAPTER 9
Glossary of Terms
TFX-11 UserÕs Guide

Glossary of TFBASIC Terms and DeÞnitions

Abbreviations There are no abbreviations allowed for any TFBASIC commands.

Arrays The number of arrays in TFBASIC is limited only by the size of the
variable storage area.

Arithmetic
Operators

The Þve arithmetic operators have the highest priority of all of the
TFBASIC operators. Note that TFBASIC does not have a separate high
priority unary minus operator, but instead treats the negation of a constant
or variable as zero minus the value of the variable or constant.

These are the TFBASIC arithmetic operators in order of precedence (all
operators on the same level are evaluated left to right) :

highest * / % Multiplication, Division, Modulo
+ - Addition, Subtraction
> <= > >= <> = Relational operators
& Logical bitwise AND

lowest | Logical bitwise OR

See the ÒTFBASIC Floating PointÓ section for details about arithmetic
operations involving ßoats.

Assembly
Language

The TFBASIC tokenizer has a built-in assembler. Code can be assembled
in line with the program or into a separate area as desired. See ÒTFBASIC
Assembly Code ProgrammingÓ section for details.

Break A CTRL-C sent via the primary serial port can break a running TFBASIC
program. A special command 'CBREAK' followed by a label can be used
to specify the address to restart to when a CTRL-C is received. You can
disable CTRL-C breaks by writing a zero byte to address 9C hex. A count
of CTRL-C characters will continue to be updated at address 9B hex.
Clear this before re-enabling break-outs. See CBREAK.

Case Labels and variable names are case sensitive, commands and keywords
are case insensitive.

Comments TFBASIC provides two ways to include comments in your code; one for
TFBASIC code, the other for assembly code. In TFBASIC a pair of
forward slashes (//) can appear anywhere on a line and cause the rest of
222 TFX-11 UserÕs Guide

Glossary of TFBASIC Terms and DeÞnitions
the line to be ignored. In assembly code a semicolon (;) is used to
separate comments from code. Comments are stripped before the
tokenizing pass and therefore do not affect execution code size.

Constants TFBASIC supports string, integer, and ßoating point constants. Integer
constants are signed decimal numbers in the range -2147483648 to
+2147483647 or unsigned hexadecimal numbers in the range &H0 to
&HFFFFFFFF. Floating point constants must include a decimal point and/
or the power-of-ten speciÞer 'E'. All ßoating point constants are single
precision with a range of ±1.175494E-38 to ±3.402823E+38 and 0.0. See
the "TFBASIC Floating Point" section for details. There are no short
integer constants, and no octal constants.

Character constants of up to four characters in single quotes are allowed.
The character on the right is placed as the least signiÞcant byte in the four
byte constant.

String constants must be bracketed by double quote characters. String
constants can be used with the PRINT, INPUT, and STORE commands.

DataÞle :
Storage and

Retrieval

The Tattletales have a special non-volatile data storage area called the
dataÞle, which can only be written from the TFBASIC program. DataÞle
commands are STORE for writing, and OFFLD for reading. An OFFLD
command is not available from the TFBASIC program, but is a menu
command in TFTools. The dataÞle contains a read only pointer that points
to the next empty dataÞle byte, and this pointer automatically increments
after each STORE command. NOTE: Once the data is stored in the
SFLASH it cannot be read back or written over by the program!

Data Types TFBASIC supports long integers, string constants, and strings as well as
IEEE 754 single-precision ßoating point. There are both implicit and
explicit conversion operators to convert numbers between integer and
ßoating point formats and back again. See the "TFBASIC Floating Point"
section for details.

Decimal See Radix

Division by Zero Integer division by zero will cause the program to stop executing and
display the "HOW" message. Refer to the "Errors" heading for more
information on error handling. Floating point division by zero DOES NOT
stop program execution. As with other ßoating point errors, it sets a bit in
Chapter 9 : Glossary of Terms 223

the FPERR error variable to indicate an error. Division by zero returns a
result of inÞnity. See "TFBASIC Floating Point".

Editing Editing is done on the host computer in the TFTools IDE. The TFX-11
board is not running an interpreter and therefore has no facilities for
editing.

Errors A list of error statements and their causes can be found on the "TFBASIC
Error Messages" summary page. An error will stop program execution
and display a message unless an ONERR command has been executed
by the program. The ONERR command is detailed in the "TFBASIC
Language Reference" section.

Floating point Single precision ßoating point math (IEEE 754) is available in TFBASIC
along with a number of trigonometric functions. See "TFBASIC Floating
Point" for more information.

Hexadecimals See Radix

IDE Acronym for Integrated Development Environment

I/O: Analog /
Digital

Standard dialects of BASIC use the keyboard and disk storage for data
input. In the Tattletale these inputs are augmented by the logger's analog
and digital inputs. A number of new commands and functions have been
designed to deal with these inputs and outputs simply and efÞciently. The
analog command to get a value from an A/D channel is CHAN(X), where
X is the channel to be read. The digital I/O input read command is PIN(X),
and the digital output commands are PSET, PCLR, and PTOG. See the
language reference for more information.

Labels,
assembler

Labels can be used in the assembly code for ßow control and to deÞne
local variables. Assembler labels can be up to 32 characters long, must
begin with a letter or an underscore (_), and may end with a colon. The
only valid characters in a label are upper and lower case characters, the
numbers and underscore. The label name must start in the Þrst column of
the line. Assembler label names are not required to be terminated with a
colon when deÞned.

Labels, TFBASIC TFBASIC labels can be up to 32 characters long, must begin with a letter,
an underscore (_) or the @ symbol and end with a colon. The only valid
224 TFX-11 UserÕs Guide

Glossary of TFBASIC Terms and DeÞnitions
characters in a label are upper and lower case characters, the numbers,
underscore and @. TFBASIC labels DO NOT have to begin in the Þrst
column of the line. Line numbers are not acceptable as labels!

Line Forms There are almost no immediate commands and line numbers are not
allowed. Blank lines are permissible and are encouraged for readability.

Line Numbers Line numbers are not allowed in TFBASIC.

Logical
Operators

The Tattletale supports the two logical operators, AND and OR, which are
used for both bit-wise operations and logical connectives. Unlike most
other BASIC dialects, the operators are not spelled out, but instead are
represented by the symbols "&" for AND, and "|" for OR.

Multiple
Statements

TFBASIC does not support the use of colons to allow multiple statements
on a single program line.

Octal See Radix

Overßow Overßow errors are detected during the evaluation of an expression when
the intermediate value becomes greater than the maximum long integer
(four byte integer) value of 2,147,483,647, or less than the minimum long
integer value of -2,147,483,648. Overßow or underßow can occur in
ßoating point numbers if the intermediate value is outside the range
±1.175494E-38 to ±3.402823E+38. See the "TFBASIC Floating Point"
section for details. Integer overßow errors cause the program to stop
executing and display the "HOW" message. Refer to the "Errors" heading
in this section for more information on error handling.

Quotation Marks Single quotes are used to enclose character constants, double quotes
enclose character strings. Using single quotes for character strings may
generate an error or cause unexpected behavior.

Radix The radix is the number base used to interpret numeric constants,
typically either decimal, octal, binary, or hexadecimal. Decimal is the
default Radix, and there is no way to globally change this. Any number
with a radix other than decimal must be speciÞcally identiÞed using the
following techniques: (NOTE : The identifying characters are not case
sensitive.)
Chapter 9 : Glossary of Terms 225

(Base 16) Hexadecimal. Hexadecimal (Base 16) numbers can be entered in
TFBASIC by preceding the number with '&H'. The entered number must
be unsigned and may include up to eight hexadecimal characters. It will
be treated as a signed 32-bit two's-complement number internally.
TFBASIC assembly code accepts HÕ, $, 0xxh, in addition to the above.
The HÕ preÞx is preferred for designating hex numbers in assembler.

(Base 8) Octal. Octal (Base 8) numbers can be entered in TFBASIC by preceding
the number with &O where O is the character o, not the digit zero. The
entered number must be unsigned and may include up to eleven octal
characters. It will be treated as a signed 32-bit two's-complement number
internally. TFBASIC assembly code accepts QÕ xxQ, and xxO in addition
to the above. The QÕ preÞx is the preferred method for designating octal
numbers in assembler.

(Base 2) Binary. Binary (Base 2) numbers can be entered in TFBASIC by
preceding the number with '&B'. The entered number must be unsigned
and may include up to 32 binary characters. It will be treated as a signed
32-bit two's-complement number internally. TFBASIC assembly code
accepts BÕ, %, and xxB in addition to the above. The BÕ preÞx is the
preferred method for designating binary numbers in assembler.

(Base 10) Decimal. Decimal (Base 10) is the default radix in TFBASIC, and
therefore requires no identifying code. The entered number must be in the
range -2,147,483,647 to 2,147,483,647. It will be treated as a signed 32-
bit two's-complement number internally. TFBASIC assembly code has
decimal as its default radix, but also accepts DÕ and xxD as radix
identiÞers.

Relational
Operators

TFBASIC supports seven relational operators which are used for
comparing two values. Relational operations return 1 if the result of the
comparison is true, and 0 if the result is false. See the "TFBASIC Floating
Point" section for details about comparisons involving ßoats. The
relational operators are :

< less than A<B
<= less than or equal to A<=B
> greater than A>B
>= greater than or equal to A>=B
<> not equal to A<>B
>< not equal to A><B
= equal to A=B
226 TFX-11 UserÕs Guide

Glossary of TFBASIC Terms and DeÞnitions
SFLASH This is the main non-volatile storage area. It is a Serial Electrically
Erasable Programmable Read Only Memory. To help protect the user
from data loss due to program errors the SFLASH interface is designed to
only be read out and erased when the TFX-11 is connected to the parallel
or serial port. The SFLASH will retain the data for up to ten years with no
power applied.

Strings See Variables

String Operators TFBASIC supports string operations, and includes the functions MID$()
and LEN$(). See language reference for details on string functions.

Tabs Tabs are just Þne in TFBASIC, and are used to increase readability.

Timing In standard BASIC dialects, there is little need to pace a program (the
sooner it's over, the happier you are!). In a logging / control application,
however, program timing is critical. Timing functions in the Tattletale are
handled by the SLEEP and HYB commands. SLEEP puts the logger in a
low-power mode for an integral number of 10 ms steps from the wake-up
of the previous SLEEP command. This not only provides the necessary
timing, but also ensures that the logger is in a low-power mode during the
interval. HYB puts the Tattletale in an ultra low power (dormant) mode
with wakeup at a Þxed time in the future or at regular intervals. HYB is
especially appropriate where the application has long periods of
quiescence with periodic short bursts of logging and control activity.

UEEPROM This is a small block of 128 bytes of non-volatile data storage located
inside the HC-11 processor. It is accessible only from TFBASIC and can
be read and written at any time using VSTORE and VGET. It is speciÞcally
meant for calibration or conÞguration parameters that are unique to the
particular instrument. This allows a single program to run on different
TFX-11s without having to have different versions of the program that
depends on sensor calibration or environmental factors. This data will be
retained with no power applied.

Variables Integers. Variable names up to 32-characters long are allowed in
TFBASIC. All variables not speciÞcally typed are 4 byte integers

IEEE 754 Floating Point. Variables intended to be ßoating point variables
must have a ! sufÞx.
Chapter 9 : Glossary of Terms 227

Strings. Variables intended to hold strings must have a $ sufÞx.

Arrays. Arrays must be declared using the DIM statement. An array may
be either ßoating point or integer. Up to two dimensions are allowed and
total array size is limited to the size of available memory. String arrays are
not allowed in TFBASIC.

White Space White space is stripped out (except in strings!) before it is sent to the
Tattletale. White space is necessary around command, variable and array
names.
228 TFX-11 UserÕs Guide

INDEX
Symbols
222, 226

- 222
" 225
$ 226
% 222, 226
& 222, 225
* 222
+ 222
/ 222
// 12, 222
= 222, 226
> 222, 226
>= 222, 226
@ 224
_ 224
| 222

A
A/D converter 198
A/D input choices 198
A0 209
About Box 43
ABS 47, 170
AD12-0, AD12-10 209
AD8-0-AD8-7 209
ADGND 210
ADVCC 210
AINT 48, 51, 56
ALIGN 149
Arithmetic Operators 168
ASFLT 57, 170
ASM 58

mnemonics 145
two forms of 140

Assembler Opcodes 140
Assembly Language Subroutines 155
ATN 61, 170

ATOD12 155
ATOD8 155

B
Backup Battery 203
baud 18
Baud rate 130
baud rate 63
BAUDGET 47, 63
BAUDSET 62
Big-endian 164
Bipolar mode 188
Blank line 13
BRKCNT 157

C
CALL 142
Capture to File... 40
Cascade 42
CBREAK 65
CCOUNT 157
CENAB 157
CHAN() 11, 66
Change dir... 30
Character codes 102
Character constants 174
CHIBUF 155
chip selects 198
Circuit for Converting Bipolar to Unipolar 188
Clear 32
Clock Resolution 211
Close 30
Command line options 43
Communications Connectors 204
compiler 16
Contacting Onset ix
Copy 32
COS 67, 170
TFX-11 UserÕs Guide

Could not Compare 173
COUNT 68
Crystals 211
CSIO1 208
CSIO2 208
CTRL-C 12, 65, 162, 222
CTRL-E 161
CTRL-H 161
CTRL-L 161
CTRL-O 161
CTRL-R 161
custom interface board 204
Cut 32

D
D0-D7 208
DATA 150
DataÞle Storage Commands 48
development kit 2
DFERASED 47
DFMAX 47
DFPNT 47, 124
Digital I/O Control 49
Digital I/O pins 198
DIM 70
Disclaimers vii, viii
DOS 16, 31
DOS shell 31
DS 154
DW 150

E
E 208
editor 10, 16
enclosure, plastic 203
END 152
EQU 153
Erase dataÞle... 36
Error Messages, TFBASIC 137
escape sequence 175
escape sequences

mnemonic 176
numeric 176

EXP 71, 170

F
FCB 150
FCC 150
FDB 150
Þlename 18
Find Again 35

Find... 34
FIX 72, 170
FLOAT 73, 170
Float 48, 51, 56
Floating Point Errors 171
Floating Point Functions 169
FLUSHI 155
FLUSHO 155
FOR 13, 74
FPERR 47, 171
Functions 48
FVAL 76

G
GETBSR 155
GND 207, 208
GOSUB 77
GOTO 78

H
HALT 79
Hex display 40
Host Computer Requirements v
HOSTREQ 206
How to use this manual iii
HOW? error 47
HOW? errors 137
HYB 80

I
IDE 161
IEEE 754 ßoating point 121, 167
IF 81
INPUT 13, 82
Input Protection 185
INSTR 85
Instrumentation ampliÞer 190, 195
INT 86
int 170
Integers 164
Integrated Editor 16
interrupt vectors 158
Inverting op amp 190
IRQ 208
IVAL 87

J
jacks, optional 204
230 TFX-11 UserÕs Guide

K
Keyboard equivalents 43

L
Labels, assembler 140
LAUNCH 163
Launch 36, 162
LED 207
LEN 88
LITH 207
Little-endian 164
LNCHSTAT 157
Load OS Only 38
LOG 89, 170
LOG10 90, 170
Loss of Precision 173
Low Power and Time Commands 50
LT1077, 1078, 1079 193

M
Memory Map 177
MID 91
MODEL 47
monitor 160, 161
mouse 16
MRESET 207

N
NaN 89, 90
New 28
NEXT 13
Next 42
Non-inverting op amp 191
Not-a-Number 89, 90, 172

O
Ofßoad

Parallel ofßoad... 37
XMODEM Ofßoad... 36

ONERR 13, 92, 138
Onset, contacting i
Op amp limitations 192
Open... 28
operational ampliÞer 190
Options... 38
Opto-isolation 185
Output Protection 186
OUTTST 155
Overßow 172
OVRSLP 157

P
PA0-PA7 209
Parallel cable Pinout 219
Parallel Port v
Parallel Port... 41
Parse Error 6
Paste 32
Paste Date/time 32
PCL 11
PCLR 94
PDAD12 155
PEEK 95, 157
PERIOD 96
PGO/EOC 208
PICACK 206
PICHSHK 207
PIN 99
Pin outs, TFX-11 board 201
POKE 100, 157
port 18
Power Connections 203
power supply 7
PPMISO 207
PPMOSI 206
PPSCLK 206
PR-11 breadboard 204, 206
PR-11 Prototype Board 202
Previous 42
PRINT 30, 101
PRINT Formatting 101
Print selection 30
Program Commands 48
PSET 11, 104
PTOG 105

Q
Quick Start 3
Quit 31

R
R - C 185
R/W 208
Radix 60, 144
RATE 106
Ratiometric 187
ratiometric 66
RB7-RB0 207
READRTC 108
REF- 209
REF+ 209
Registering your TFX-11 vi
Chapter : 231

Registers 114
Relational operators 168
Relaunch 36
REPEAT 110
Replace... 35
RES 154
RESET 161
Resistor 185
RETURN 77, 112
Returns vii
RMB 154
RTC Storage Structures 211
RTIME 113
Run 36

S
Save 30
Save As 30
schematic 198
Schottky diode 188
screen display

25 line 42
50 line 42
Blk/wht 42
Color 42

SDI 114, 206
SDO 116, 206
serial cable 3
Serial Cable Pinout 219
Serial Port 18
Serial Port... 40
Set PC Time 33
SETRTC 118
SFLASH ii, 13, 14, 37, 47, 124, 157, 160, 161, 162,

169, 203, 213, 214, 215, 223, 227
Show clipboard 33
sign bit 164
Sign-on message 7
SIN 119, 170
SLEEP 11, 120
Special characters, embedding 175
SpeciÞcations iv
SQR 121, 170
Square wave 128
STIME 122
STOP 13, 123
Stopwatch functions. 156
STORE 124
STPWCH 156
STR 125
STRBSR 155

String functions 174
String handling operations 175
Strings in TxBASIC 174
STRMEM 155
Suspend TFX-11 37
Syntax check 5, 38
syntax error 160

T
TAN 126, 170
technical assistance vii
TEMP 127
TEMP() 11
Terminal Window 17
TFBASIC Assembly Language 140
TFBASIC summary 43
TFBASIC, Important Addresses in 157
TFTools 18
TFTools menu commands

COMMPORT 40
EDIT 32
FILE 28
HELP 43
SEARCH 34
TATTLETALE 36
WINDOWS 42

TFTools Tutorial 4
TFTools, command line options 18
TFTools, explanation of windows 19
TFTools, Introduction to 16
TFTools, invoking from the DOS prompt 18
TFTools, Startup screen 20
TFX-11 Features ii
TFxBASIC LANGUAGE OVERVIEW iii
thermistor 10, 127
Tile 42
Timing 116
TLC1078 193
Token Engine 160
token interpreter 160
Tokenizer 160
TRACE 157
Transistor 185
Turbo Vision 16

U
UART 155
UDI 206
UDO 206
UEEPROM 133, 134
Underßow 172
232 TFX-11 UserÕs Guide

Undo 32
Unity gain buffer 191
URTGET 155
URTSND 155
URTTST 156
USEND 131

V
VARPTR 132
VBAT 207
VCC 207, 208
VERS 47
VFET 185
VGET 133
VRH 209
VRL 209
VSTORE 134

W
Warranty vii
WHILE 135

X
XMITÐ 48, 53, 136
XMIT+ 136
Chapter : 233

234 TFX-11 UserÕs Guide

