Roger Cortesi, 16 DEC 00
How will the bearing rails deflect over the length of travel at maximum and minimum workpiece sizes?

$$
\begin{aligned}
& \mathrm{m}_{\text {spindle }}:=30 \mathrm{lb} \quad \text { Mass of Spindle } \\
& \rho_{\mathrm{Al} 02}:=3900-\frac{\mathrm{kg}}{\mathrm{~m}^{3}} \quad \mathrm{D}_{\mathrm{wp}}:=15 \mathrm{in} \quad \mathrm{~L}_{\mathrm{wp}}:=12 \mathrm{in} \\
& \mathrm{~m}_{\mathrm{wp}}:=\rho_{\mathrm{Al} 02} \cdot \mathrm{~L}_{\mathrm{wp}} \cdot \frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{wp}}^{2} \quad \mathrm{~m}_{\mathrm{wp}}=135.5 \mathrm{~kg} \\
& \mathrm{~L}_{\text {brng }}:=4 \text { in } \quad \mathrm{L}_{\text {rail }}:=16 \text { in } \\
& \mathrm{E}:=210 \mathrm{GPa} \quad \mathrm{D}_{\text {rail }}:=50 \mathrm{~mm} \quad \mathrm{I}:=-\frac{\pi \cdot \mathrm{D}_{\text {rail }}}{64} \\
& \text { The function for deflection of beam clamped at both } \\
& \delta(\mathrm{F}, \mathrm{x}):=\frac{\mathrm{F} \cdot \mathrm{x}^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot\binom{\mathrm{x}-\mathrm{L}_{\text {rail }}}{-\mathrm{L}_{\text {rail }}}^{3} \quad \begin{array}{l}
\text { ends at the point } \mathrm{x} . \text { The force is also applied at } \mathrm{x} . \delta \\
\text { is the conservative estimate assuming the whole load } \\
\text { is applied at a single point. } \delta 1 \text { is a more realistic }
\end{array} \\
& \text { is applied at a single point. } \delta 1 \text { is a more realistic } \\
& \text { loading with the load being applied at two points. } \\
& \delta_{1}(\mathrm{~F}, \mathrm{x}):=\frac{\mathrm{F}}{6 \cdot \mathrm{E} \cdot \mathrm{I}}\left[\left(\mathrm{x}-\frac{\mathrm{L}_{\text {brng }}}{2}\right)^{3} \cdot\binom{\mathrm{x}-\mathrm{L}_{\text {brng }} \cdot 0.5-\mathrm{L}_{\text {rail }}}{-\frac{L_{\text {rail }}}{}}^{3}+\left(\mathrm{x}+\frac{\mathrm{L}_{\text {brng }}}{2}\right)^{3} \cdot\binom{\mathrm{x}+\mathrm{L}_{\text {brng }} \cdot 0.5-\mathrm{L}_{\text {rail }}}{-L_{\text {rail }}}^{3}\right] \\
& \mathrm{F}_{\text {max }}:=0.25 \cdot\left(\mathrm{~m}_{\text {spindle }}+\mathrm{m}_{\mathrm{wp}}\right) \cdot \mathrm{g} \text { The maximum and minimum forces applied to the carriage. } \\
& \mathrm{F}_{\text {min }}:=0.25 \cdot \mathrm{~m}_{\text {spindle }} \cdot \mathrm{g} \\
& \delta\left(\mathrm{~F}_{\text {max }}, 0.5 \cdot \mathrm{~L}_{\text {rail }}\right)=-2 \mu \mathrm{~m} \\
& \delta_{1}\left(\mathrm{~F}_{\text {max }}, 0.5 \cdot \mathrm{~L}_{\text {rail }}\right)=-1.6 \mu \mathrm{~m} \\
& \mathrm{GPa}:=10^{9} \mathrm{~Pa} \\
& \mu \mathrm{~m}:=10^{-6} \mathrm{~m} \\
& \text { Parameters for maximum workpiece size. } \\
& \text { The maximum mass of the workpiece } \\
& \text { ends at the point x. The force is also applied at x. } \delta \\
& \text { is the conservative estimate assuming the whole load } \\
& \text { oading with the load being applied at two points. } \\
& \text { The are divided by four because four rails will be supporting } \\
& \text { the carriage. } \\
& \text { The maximum rail deflection at the center of the } \\
& \text { rail for the single and pair point loading of the rails. }
\end{aligned}
$$

p

