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Setting MATLAB’s Current Directory (a.k.a. the Working Directory) 
Set MATLAB’s current directory to a folder which you can save files in. In MATLAB’s main 
window the current directory is displayed in the upper right corner. Use the “…” button to 
change it. 

MATLAB's Current (Working) Directory

 

Entering a transfer function in MATLAB 
There are two methods of entering a transfer function in MATLAB. For example, the transfer 

function 
255

25)( 2 ++
=

ss
sG  could be entered by either: 

MATLAB Commands  Remarks 

Method 1:  
>> s=tf(‘s’); 
>> G = 25/(s^2+5*s+25) 
Transfer function: 
      25 
-------------- 
s^2 + 5 s + 25 

The first line specifies ‘s’ as the transfer function’s 
variable. This command only needed once per MATLAB 
session. 

The second line specifies the transfer function G as a 
function of s. If you don’t terminate the line with a 
semicolon, MATLAB will display the transfer function. 
This makes it easy to confirm that the transfer function 
was entered correctly. 

Method 2:  
>> G = tf([25],[1 5 25]) 
  
Transfer function: 
      25 
-------------- 
s^2 + 5 s + 25 
 
>> G = tf([25 0],[1 0 25]) 
  
Transfer function: 
  25 s 
-------- 
s^2 + 25 

Use the MATLAB function “tf”. It takes two arguments, 
a list of coefficients for the numerator and list for the 
denominator. Again, omitting the semicolon allows you to 
verify that the transfer function correctly was entered 
correctly. 

The second example demonstrates that the coefficient of 0 
must be included to skip terms in numerator and 
denominator. 
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Starting SIMULINK 
SIMULINK can be started by: 

1) Opening a SIMULINK model file (model files use the .mdl extension). 

2) Starting MATLAB and clicking on the  icon in the tool bar. 

The SIMULINK Library Browser 
SIMULINK models are made up of different elements connected in a block diagram. The 
SIMULINK Library Browser is catalog of all the elements available to the model. 

View the library browser with the  icon or by selecting the “Library Browser” menu 
option in the “View” menu of a model file. 

Creating a New SIMULINK Model 

Open the SIMULINK Library Browser. Click on the “New Model” icon  or select 
“New… → Model File…” from the Library browser’s “File” menu. This will open a 
blank model window. 

Setting the Start and Stop Time of a Simulation 
The start and stop time of a simulation is set in the model file’s “Configuration 
Parameters” window. 
(“Simulation” menu → “Configuration Parameters”, or press Ctrl-E) 

SIMULINK Printing Problems 
Sometime when printing a plot generated by SIMULINK, the line will be printed in a 
very light shade of grey. This is makes it very difficult to read the plot. This happens 
when MATLAB sends color data to a black and white printer. The black and white 
printer prints the yellow line as a very light shade of grey. 

To fix this, go to the “general” setting in the preferences window (“File” menu → 
“Preferences…”). Set “Figure Window Printing” to “Always send as black and white”.  

Make sure you use the “File” menu from the SIMULINK model file’s window. 

SIMULINK Scope Block NOT Plotting All the Results 
If a scope block does not seem to be displaying all the results from the simulation, try 
clicking on the autoscale button  at the top of the plot to resize the plot’s axes. 

In some simulations the scope block will not plot data at the beginning of the simulation. 
For example, in a 20 second simulation, it might only plot the last 14 seconds of data. By 
default a scope block will only display the last 5,000 data points. If the simulation used 
more that 5,000 data points, then the earlier points will not be plotted. 

To change this setting, open the ‘Scope’ Parameters window by clicking on the  icon 
in the top right corner of the scope’s plot. Select the “Data History” tab and uncheck the 
“Limit data points to last: x” checkbox. You need to make this change to each of the 
affected scopes. 
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Useful SIMULINK Blocks 
Block Location in the Library and Notes 

1

s+1
Transfer Fcn  

Location: Continuous 

Double click on the block to set the transfer function. The numerator and 
denominator are set in bracket format. For example, [1 2 3] = 322 ++ ss . See 
method 2 for specifying a transfer function. 

It may be necessary to make the block bigger to display its current transfer 
function. 

1

Gain  

Location: Commonly Used Blocks & Math Operations 

Double click on the block to set the gain. 

If the block is too small to display its current value, it displays “-K-“. Make the 
block bigger to display the current gain value. 

 

Location: Commonly Used Blocks & Math Operations 

Double click on the block to set the number of inputs and their signs. The string 
“|++” produces the format displayed here. “+++” has three positive inputs. “|+-“ is a 
typical junction for negative feedback loops. The “|” character means “no input at 
this location”. Try other combinations of the characters “|”, “+”, and “-“. 

Step  

Location: Sources 

This block generates a step function. Double click on the block to set its initial 
value, final value, and step time. 

By default, the step occurs at time=1. Double click on the step block to change 
the step time to t=0. You must make this change every time you use a new step 
function. 

Scope  

Location: Commonly Used Blocks & Sinks 

This block generates a plot of its input for the duration of the simulation. 

Double click on the block to display the plot. 

The  icon auto scales the plot. The  and  icons allow zooming in on 
the x and y dimensions of the plot. 

Mux  

Location: Signal Routing 

This block combines two or more signals into a single signal 
path. The signals are unchanged by this combination. It is useful 
for plotting multiple signals on the same scope. 

Double click the block to set the number of input signals. 

du/dt

Derivative  

Location: Continuous 

This block takes the derivative of its input. 

Mux Scope
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1
s

Integrator  

Location: Commonly Used Functions & Continuous 

This block takes the integral of its input. The default value for its initial condition is 
zero. 

Double clicking on the block allows the initial value to be set to some other value 
or driven from an external source. 

0

Display
 

Location: Sinks 

This block displays the value of its input.  It is useful for displaying a final value at 
the end of the simulation. 

In1 Out1

Subsystem  

Location: Commonly Used Blocks & Ports/Subsystems 

This block allows another model to be completely embedded in the model.  Double 
clicking on the block opens another model window to edit the subsystem. 

This block is useful for keeping the main model file from becoming too cluttered. 
Adding input and output blocks to the subsystem will add more ports to the 
subsystem. 

Sine Wave  

Location: Sources 

This block generates a sine wave. Double clicking on the block allows the 
amplitude and frequency to be set. 

Saturation  

Location: Commonly Used Blocks & Discontinuous 

This block limits the signal to be between an upper and lower value (inclusive). 
Double click on the block to set the upper and lower limits. 

Zero-Order
Hold  

Location: Discrete 

This block periodically samples the input. Its output for the sample period is the 
value of previously sampled input. 

Double click on the block to set the sampling period. 

Performing Basic Math Operations 
The Library Browser branch Math contains commonly used math 
functions.  To multiply a signal by a constant, use the gain block.  To 
change the gain, double click on the gain block and change the Gain field of the Block 
Parameters window.  To add two or more signals, use a Sum block.  By double clicking on the 
sum block you can change the shape of the block, the number of inputs, and sign of each input.  
Simulink also contains nonlinear functions including trigonometric functions.  By double 
clicking, you can select any common trigonometric function.  NOTE:  Simulink and MATLAB 
always assume RADIANS as the units of all angles for trigonometric functions! 
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Basic MATLAB Workspace Commands 
who   lists the names of all variables in the workspace  
whos  lists all variables in the workspace along with their size and data type 
clear  removes all variables from workspace 
clear name removes the variable name 
save name saves all variables in the workspace in the disk file name 
load name loads variables from disk file name into the workspace 
dir  lists the files in the disk current directory 

Basic MATLAB Plotting Commands 
plot(x,y)    plots data in vector y versus the data in vector x 
plot(x,y,’s’)   plots data in vector y versus x with line attributes ’s’ 
plot(x1,y1,’s1’,x2,y2,’s2’) plots y1 versus x1 with line attributes ’s1’ 

  and y2 versus x2 with line attributes ’s2’ 
 

The following table summarizes basic line attributes.  An attribute string can contain one 
character from each column: 

Basic MATLAB Line Attributes 

Color Marker Style Line Style 
b     blue .     point   -     solid 
g     green o     circle   :     dotted 
r     red x     x-mark   -.    dashdot  
c     cyan +     plus   --    dashed    
m    magenta *     star  
y     yellow s     square  
k     black d     diamond  

 

Your can create and manipulate multiple figure windows using the following commands: 
figure(n) switch to the nth figure window, making it the active figure, create figure window n if necessary 
hold on hold active figure so that plot commands are cumulative 
hold off release active figure hold so that the next plot command  erases existing data 
clf  clear the active figure window 

The active figure can be labeled and annotated using the following commands: 
xlabel(’string’)    label the x-axis 
ylabel(’string’)    label the y-axis 
title(’string’)    title the plot 
grid      add grid lines to the plot    
text(x,y,’string’)   place text inside the plot at point (x,y) 
gtext(’string’)    place text by clicking the mouse at on the plot  
legend(’string1’,’string2’,...) annotate plot with  ’string’ descriptions of multiple curves 

 
To enable interactive plot editing, click arrow pointing toward the upper left. In the above figure, 
the white box around this icon indicates that interactive plot editing has been selected. 



 ES360 Introduction to Controls Engineering 

 MATLAB and SIMULINK Help 

 Page 6 of 6 

Useful MATLAB Operators and Functions 
Operators Basic Functions Trig. Functions 
x+y Addition round(x) Convert to Integer sin(x) Sine of x 

x-y Subtraction sqrt(x) Square root of x cos(x) Cosine of x 

x*y Multiplication log(x) Natural logarithm of x asin(x) Arcsine of x 

x/y Division log10(x) Logarithm base 10 of x acos(x) Arccosine of x 

x^y Power exp(x) Exponential of x tan(x) Tangent of x 

Matrix Specific abs(x) Absolute value of x atan(x) Arctangent of x 

x’ Transpose imag(x) Imaginary part of x atan2(x,y) Four quadrant 
arctangent of (x/y) 

inv(x) Inverse real(x) Real part of x   

det(x) Determinant conj(x) Complex conjugate of x angle(x) Angle of x 

Control Specific Commands  

Creating and analyzing linear models 
sys = tf(num,den)    Create transfer function from numerator and denominator polynomials 
sys = zpk(z,p,k)    Create transfer function from with zeros z, poles p, and gain k 
[z,p,k] = tf2zpk(num,den)  Find the zeros z, poles p, and gain k from num and den polynomials 

Manipulating Polynomials 
[r,p,k] = residue(num,den)Partial fraction expansion in terms of residues r, poles p, and direct term k 
x = roots(y) Create vector x containing roots of polynomial with coefficients defined in vector y 
y = poly(x) Create vector y of polynomial coefficients with roots defined in vector x  

Model dynamics 
dcgain(sys)  Calculate D.C. (low frequency) gain 
bandwidth(sys) Calculate system bandwidth 
pole(sys)  Calculate system poles 
zero(sys)  Calculate system poles (transmission) zeros 
damp(sys)  Calculate natural frequency and damping of system poles 

Time-domain analysis 
ltiview(sys) Response analysis Graphical User Interface (LTI Viewer) 
step(sys)  Plot or calculate step response 
impulse(sys) Plot or calculate impulse response 

Frequency-domain analysis 
bode(sys) Bode diagrams of the frequency response 

Classical design 
sisotool(sys)  Single Input Single Output (SISO) design Graphical User Interface 
rlocus(sys)   Plot root locus 
rltool(sys)   Root locus interactive design tool 
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Complex Numbers 
Recall that complex numbers have a real and an imaginary part. The imaginary part is 
usually written as a multiple of i. Where i is the square root of -1. Many texts will use the 
letter j, instead of i, for the square root of -1.  

Complex numbers can be written in either rectangular form, bias +=  where the real and 
imaginary components are separate. Or they can be written in polar form as an angle and 
a magnitude, °∠= dcs . 

Addition and subtraction of complex numbers by hand is easier in rectangular form. 
Multiplication and division of complex numbers by hand is easier in polar form. 

1) For each question find the numerical answer in rectangular and polar form. Plot the 
answers on the complex plane. Calculate at least one part (the rectangular or polar 
answer) without a calculator. The questions have been selected to make this easy. 

  Rectangular Polar 

a 1−    

b 4−    

c ii 2542 −++    

d 2−    

e )5.03()52( jj +⋅+    

f 2j    

g 3i    

h 2)1801( ⋅°∠    

i °∠+°∠ 2703902    

j °∠⋅°∠ 452901    

σ

jω

 

σ

jω

     

σ

jω
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Quadratic Equations 
Recall that quadratic equations have the form 

02 =+⋅+⋅ cxbxa . 

The two solutions to the quadratic equation are given by: 

a
cabbx

⋅
⋅⋅−±−

=
2

42

. 

If ca ⋅⋅4  is greater then 2b , then the solutions will have an imaginary component 
because the term under the radical will be negative. 

2) For the quadratic equations below find both solutions and plot them on the complex 
plane. Solving for both complex solutions of the quadratic equation is an excellent 
use of your calculator. 

  
1x  2x  

a 0562 =++ xx    

b 0562 =+− xx    

c 0562 =−− xx    

d 0522 =++ xx    

e 042 =+x    

f 0442 =+− xx    

g 062 =+ xx    

h 0562 2 =++ xx    

i 0752 =++ xx    

j 076 2 =++ xx   
 

σ

jω

 

σ

jω

σ

jω
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Block Diagrams 

Introduction and Multiplication 
When building a mathematical model of a system it is useful to draw a diagram showing 
the relationship between the different components. This is typically done in the form of a 
block diagram. Block diagrams help break the problem down into manageable 
components. 

Consider a simple spring. Hook’s Law for a spring is 

xkf ⋅= . 

Given a force applied to the spring one can find the spring’s displacement; or given an 
applied displacement one can find the resulting force. Figure 1 displays this relationship 
as a block diagram. 

K
X KX = F

(a)

1/K
F F/K = X

(b)
 

Figure 1: The block diagram for a spring showing displacement as the input and force as the output (a) 
and force as the input and displacement as the output (b). 

The spring example illustrates that the fundamental operation of the block diagram is 
multiplication. The output of the block is the product of the input and the block itself. 
Figure 2 shows a pair of blocks connected and the resulting output. 

AX B

AX

ABX
 

Figure 2: The output is the product of the input and the block. 
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Addition and Subtraction 
Addition (and subtraction) is accomplished by a summing junction on the outputs of the 
blocks. 

A

B

+
+

X (A+B)X

(c)

AX1

BX2

AX1+BX2

(d)

AX1

B

+
-

X2

AX1-BX2

(b)

AX1

B

+
+

X2

AX1+BX2

(a)

 
Figure 3: Three correct and one incorrect examples of block diagram addition. Figure (d) is incorrect 

because there is no summing junction connecting the outputs of blocks A and B so one does not know how 
to combine their outputs. 

Figure 3b shows that subtraction is accomplished by changing one or more of the signs 
on the summing junction. 

Figure 3d shows that block outputs cannot be combined without a summing junction. 

Summing junctions are not limited to just two inputs. 

Block Simplification 
Block diagrams can be simplified. Multiple blocks and summing junctions can be 
reduced to a single block which is equivalent to the original diagram. 

A

B

+
+

X (A+B)X

(a)

(A+B)X

(b)

(A+B)X

 
Figure 4: The diagram in (a) can be simplified to the diagram in (b) and they are equivalent. 



 ES360 Introduction to Controls Engineering 

 Lesson 1b: Block Diagrams 

 Page 3 of 10 

Feedback Loops 
The feedback loop is a very important block diagram structure. These will be studied 
extensively later. For now, it is enough to know how to simplify them to a single block. 

G(s)R(s) C(s)+
-

H(s)

 
Figure 5: A negative feedback loop. 

Figure 5 illustrates a negative feedback loop. The “feedback loop” refers to taking a 
portion of the output signal, C(s), and combining it with the input signal R(s), via the 
H(s) block and the summing junction. “Negative” refers to the negative sign in the 
summing junction. A “positive feedback loop” is illustrated in Figure 6. Note the sign 
difference in the summing junction. 

G(s)R(s) C(s)+
+

H(s)

 
Figure 6: A positive feedback loop. Note the signs in the summing junction. 

The block diagram in Figures 5 and 6 are fundamentally different from the erroneous 
block diagram depicted in Figure 3d because of the direction of the arrow on the output 
side. 

Positive and negative feedback loops can be reduced to a single block and function. This 
function is the “Closed Loop Transfer Function.” 

G(s)R(s) C(s)+
-

H(s)

CLTF(s) C(s)R(s)

 

)()(1
)()(

sHsG
sGsCLTFnegative +

=  

Figure 7: A negative feedback loop reduced to a single block and function. 



 ES360 Introduction to Controls Engineering 

 Lesson 1b: Block Diagrams 

 Page 4 of 10 

G(s)R(s) C(s)+
+

H(s)

CLTF(s) C(s)R(s)

 

)()(1
)()(

sHsG
sGsCLTFpositive −

=  

Figure 8: A positive feedback loop reduced to a single block and function. 

Figures 7 and 8 give the CLTF for negative and positive feedback loops. Note that the 
sign in the denominator of the CLTF is the opposite of the sign in the summing junction. 

Closed Loop Transfer Function Derivation 
For the sake of completeness here is the derivation of the CLTF for a negative feedback 
loop. To help keep the derivation clear, all the (s) notations in the functions R, E, G, H, 
and C have been omitted. Remember these are all functions of the variable (s). The 
segment between the summing junction and G(s) has been designated E(s). E is for Error 
signal. 

GR C+
-

H

E

 
Figure 9: A negative feedback loop with the error signal, E, labeled. 

The output C(s) is given by 

EGC ⋅= . 

The error signal E(s) is given by 

CHRE ⋅−= . 

Substituting the second equation into the firsts yields 

CHGRGCHRGC ⋅⋅−⋅=⋅−⋅= )( . 

Bringing C(s) to one side and separating out R(s) 

RGCHGCHGC ⋅=⋅⋅+=⋅⋅+ )1(  

R
HG

GC ⋅
⋅+

=
1

. 
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Questions 
Traditionally, the input function to a system is named R(s) and the output is named C(s). 
The functions G(s) and H(s) are arbitrary functions for particular blocks. 

For each of the block diagrams calculate the output C(s). 

1) 
G1(s) G2(s)R(s) C(s)

 
C(s)=

 
2) 

3s 4sR(s) C(s)

 
C(s)=

 
3) 

5s2 9/sR(s) C(s)

 
C(s)=

 
4) 

+
+

C(s)R(s)

B(s)
 

C(s)=
 

5) 
+

+
C(s)6s

5
 

C(s)=
 

6) 
+

-
C(s)4s

7/s
 

C(s)=
 

7) 

G1(s) G2(s)R(s) C(s)+
+

D(s)
C(s)=

 

8) 

1/(s+1) 4/(s+2)R(s) C(s)+
+

D(s)
C(s)=
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Find the closed loop transfer functions (CLTF) for the negative feedback loops below. 

Your answer MUST be in the form 
2

1

polynomial
polynomial .  For example:

73
5

2 ++ ss
. 

Do not use your calculator! Practice now, will save a lot of time later! 

G(s)+
-

H(s)
 

)()(1
)(

sHsG
sG

+
⇒

9) 

 

+
-

1

73
5

2 ++ ss

 
10)  

+
- 6

8
2 ++ ss

 
11)  

+
- 510

1
2 ++ ss

 
12)  

+
-

3

2010
20

2 ++ ss

 
13)  

+
-

2s

712
12

2 ++ ss

 
14)  

+
-

5s

66
1

2 ++ ss

 
15)  

+
- 5010

100
2 ++ ss
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16) Reduce the following block diagram to a rational function. Sketching the 
intermediate block diagrams will be helpful. Do not use your calculator. 

B+
-

C

+
+

A
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17) Reduce the following block diagram to a rational function. Sketching the 
intermediate block diagrams will be helpful. Do not use your calculator. 

+
-

2

+
-

4

3s

1
1
+s
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18) Reduce the following block diagram to a rational function. Sketching the 
intermediate block diagrams will be helpful. Do not use your calculator. 

+
-

2s

+
-

6

4

122
23

2 ++ ss

 



 ES360 Introduction to Controls Engineering 

 Lesson 1b: Block Diagrams 

 Page 10 of 10 

19) Reduce the following block diagram to a rational function. Sketching the 
intermediate block diagrams will be helpful. Do not use your calculator. 

+
+

5s

+
-

3

0.5

12
12
+s
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Frequency Domain & Building Complicated Wave Forms 

Introduction and Overview 
In this exercise you will compare the frequency domain to the time domain for several 
common wave forms. Figure 1 shows to the wave forms we will be examining. 

time
Square Wave

time
Saw Tooth Wave

time
Impulse Train  

Figure 1: The ideal square wave, saw tooth wave, and an impulse function in the time domain. 

These wave forms can be produced by summing a series of component sine or cosine 
waves. Table 1 lists the series which produces the different wave types. 

Wave Series 

Square Wave K+
⋅

+
⋅

+
⋅

+
⋅

+
9

)9sin(
7

)7sin(
5

)5sin(
3

)3sin()sin( ttttt  

Saw Tooth Wave K
10

)10sin(
8

)8sin(
6

)6sin(
4

)4sin(
2

)2sin( ttttt ⋅
+

⋅
+

⋅
+

⋅
+

⋅  

Impulse Train K+⋅+⋅+⋅+⋅+⋅+ )6cos()5cos()4cos()3cos()2cos()cos( tttttt  

Table 1: The series for a square wave, a saw tooth wave, and an impulse train. 
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Tool Setup and Use 
The file wavegen.m is a MATLAB application which allows you to quickly plot a series 
of sine or cosine waves in both the time and frequency domains. 

To run the application you must 

1. Download the file wavegen.m to a directory for this week’s work. 

2. Open MATLAB 

3. Set MATLAB’s current directory to your directory for this week’s work. Select 
the “Current Directory” option under the “Desktop” menu. When checked, the left 
hand pane of the MATLAB window will allow you to explore the file system.  Go 
to your directory for this week. 

4. Run the command wavegen at the MATLAB prompt. The command is case 
sensitive. The command is wavegen, NOT wavegen.m. 

 

 
Figure 2: The ES360 wavegen application summing four sine waves. 

The wavegen application will sum up to 10 sine or cosine waves. The sum of the 
component waves is the black curve in the time domain plot. This is the composite wave. 
The component waves may be displayed in the time domain plot (in color). 

The frequency and amplitude must be entered as a decimal (not as a fraction). 
The frequency domain plot displays the frequency spectrum of the composite wave. 

The wave type menu sets all component waves are to either sine or cosine. 

To sum less than 10 waves, set the amplitude to zero for the unused waves. 
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Questions 
1) On the axis below sketch the frequency response for a single sine wave. Sketch what 
happens as you change the frequency and amplitude of the wave. 

frequency  
2) Using the wavegen command, plot each wave type in the time and frequency domains. 
Make a sketch of the plots on the axis below: 

Square Wave 

time

frequency  
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Saw Tooth Wave 

time

frequency  
Impulse 

time

frequency  
3) As you add more terms to the series (i.e. you sum more component waves) what 
happens to the composite wave in the time and frequency domains? 
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Basic Element Types 

Introduction, the Mass Spring Damper 
The three basic elements in system modeling are: 

1. A kinetic energy storage element 

2. A potential energy storage element 

3. An energy dissipative element 

Most real system can be modeled as combinations of these three elements. 

Mass (M)

Spring (K)

Damper (B)  
Figure 1: A simple mass spring damper system. This system has each of the three basic elements. 

Figure 1 shows a simple mass spring damper system. The spring is the potential energy 
storage element, storing energy in its compression. The mass is the kinetic energy storage 
element, storing energy in its momentum. The damper (a source of friction) is the energy 
dissipative element. 

Mass (M)

Spring (K)Damper (B)

(a) (c)(b)
 

Figure 2: The mass spring damper model (a) can be applied to systems which clearly have separate mass 
spring damper components (b) and those that do not (c). 

It is important to understand that these three elements are concepts, and not necessarily 
individual physical components of the system. For example, a mass hanging from a 
Slinky can be modeled using the above mass spring damper model. In this case the three 
elements are distinct physical parts of the system. 

A cantilevered beam sticking out of a wall can also be modeled using the same three 
components. In this case the there is only one physical part (the beam), but the beam 
exhibits characteristics of all three elements (mass, springiness, and friction). 

In both cases applying a force to the system (hitting it with a hammer) will cause it to 
vibrate back and forth until the friction dampens out the oscillations. 
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Basic Elements in Other Energy Domains 
The rotational, electrical, fluid and thermal1 energy domains all have similar elements to 
the mechanical translational domain discussed above. 

Domain Kinetic Energy Potential Energy Dissipative 
Mechanical 

(translational) Mass Spring Damper 

Mechanical 
(rotational) Rotational Inertia Spring Damper 

Electrical Inductor Capacitor Resistor 

Fluid Fluid Mass Fluid Capacitance  
(a reservoir) 

Fluid 
Resistance 

Thermal Thermal Capacitance 
(Thermal Mass) 

Thermal 
Resistance 

Table 1: Basic element types for five different energy domains. 

Energy Transfer Between Different Energy Domains 
Real objects are normally composed of several different energy domains (mechanical, 
electrical, fluid, etc.). These different domains interact with each other by moving energy 
between them. In addition to the conceptual elements described in Table 1, there are 
many physical elements which transfer energy between the different energy domains. 

Complete the table below. 
Domain 1 Domain 2 Objects that Transfer Energy from Domain 1 to Domain 2 

Rotational Translational  

Rotational Electrical  

Rotational Fluid  

Fluid Translational  

Electrical Thermal  

Electrical Rotational  

Rotational Thermal  

                                                 
1 The behavior of thermal systems is slightly different from the other four energy domains. 

The thermal capacitance of a system stores both kinetic and potential energy. The kinetic energy is stored 
in the translational motion of the atoms. The potential energy is associated with the intermolecular 
attractive and repulsive forces. 

In the other systems the dissipative elements convert motion to heat via friction or electrical resistance. In 
the thermal system the dissipative element delays the propagation of heat in time and space. 
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Questions 
In the images below label the energy storage elements (kinetic and potential) and the 
dissipative elements. Label any conversions between energy domains. 

Hydro-electric Dam 

 
Suspension Bridge 

 
Mountain Bike 
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Squash Racquet and Ball 

 
 

DC Electric Motor and Gear Box 

 
 

Bungee Jumping 

 
 



 ES360 Introduction to Controls Engineering 

 Lesson 2a: Basic Element Types 

 Page 5 of 5 

Solar Panels for Heating Water 

 
Tanqueray™ 

 
Steam Engine 
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Transfer Functions 

Introduction and Overview 
A transfer function is a model of a system or system component. It is the ratio of the 
output to the input in the frequency domain. 

)(
)()(

sX
sYsG

Input
OutputnctionTransferFu ===  

G(s)X(s) Y(s)
 

Figure 1: A transfer function G(s) with an input X(s) and an output Y(s). 

Transfer functions, their inputs, and their outputs are all functions of s, where s is 
frequency.1 

The Derivation of a Transfer Function 
There are several methods for determining the transfer function for a system. In this 
course we will usually just state the transfer function. However, it is important to 
understand where these transfer functions come from. The following is a short derivation 
of the transfer function for a mass-spring-damper system. 

x(t)

f(t)

Mass (M)

Spring (K)

Damper (B)  
Figure 2: A simple mass-spring-damper system. 

A transfer function describes the relationship between a particular input to a particular 
output. A single system can have multiple transfer functions, each relating a different 
input to a different output. In this mass-spring-damper example we will consider the 
possible inputs and outputs as2: 

• Input: The force applied to the mass as a function of time f(t). 

• Output: The position of the mass as a function of time x(t). 

This system has three elements, the mass, the spring, and the damper. Each of these 
elements have a different relationship between force and position. 
                                                 
1 Strictly speaking, s contains more information than frequency alone. This will be covered later in the 
course. 
2 Other possible inputs and outputs for this mass-spring-damper system could include its velocity or 
acceleration. 
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Element Force Displacement Relationship Force is proportional to… 

Spring )()( txktf ⋅=     (Hook’s Spring Law) Position 

Damper (friction) )()()( tx
dt
dbtvbtf ⋅=⋅=  1st Derivative of Position 

(Velocity) 

Mass )()()()( 2

2

tx
dt
dmtv

dt
dmtamtf ⋅=⋅=⋅= 2nd Derivative of Position 

(Acceleration) 

Table 1: The force displacement relationships for a mass, spring, and damper. 

The sum of all the forces on the mass is 

)()()()(2

2

tftxktx
dt
dbtx

dt
dm =⋅+⋅+⋅ . 

This is a second order differential equation describing the relationship between force and 
position for the system in the time domain. 

We can convert this equation to an algebraic equation in the frequency domain by taking 
the Laplace transform of it. 

Time Domain 
Functions 

Frequency Domain 
Functions 

)(tx  )(sX  

)(tx
dt
d  )(sXs ⋅  

)(2

2

tx
dt
d  )(2 sXs ⋅  

Table 2: Some functions in the time domain and their Laplace transforms in the frequency domain.3 

Taking the Laplace transform of each term in the differential equation yields 

)()()()(2 sFsXksXsbsXsm =⋅+⋅⋅+⋅⋅ . 

Simplifying the equation by factoring the X(s) terms yields 

( ) )()(2 sFsXksbsm =⋅+⋅+⋅ . 

Recall that a transfer function is the ratio of the output over the input. In this case, the 
output parameter is X(s) and the input parameter is F(s). The transfer function for the 
mass-spring-damper system is 

ksbsmsF
sXsG

+⋅+⋅
== 2

1
)(
)()( . 

                                                 

3 The Laplace transform of )(tx
dt
d

 is actually )0()( xsXs −⋅ , where x(0) is the initial condition of the 

function in the time domain. Transfer functions assume that all initial conditions are zero. So the initial 
conditions have been omitted from Table 2. 
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A System’s Order 
A system’s order is physically determined by the number of independent energy storage 
elements within the system. This corresponds to the highest power of s in the transfer 
function’s denominator. For example: 

1
1
+s

 

is a transfer function for a 1st order system with only a single energy storage element. 

32
1

2 ++ ss
 

is a transfer function for a 2nd order system with two energy storage elements. And 

247
1

23 +++ sss
 

is a transfer functions for a 3rd order system with three energy storage elements. 
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A Transfer Function’s Response 
A transfer function is used to determine how a system will respond when a specific input 
is applied to it. There are a wide variety of possible inputs to a system. Several are shown 
in Figure 3. 

time

Step

time

Impulse

time

Ramp

time

Sinusoid

 
Figure 3: Four examples of input types in the time domains. 

We can examine the system’s response in either the frequency domain or the time 
domain. In this course, we will only be interested in the time response in the time 
domain. 

Remember, the transfer function for a system is a model in the frequency domain. 
Therefore, any input in the time domain must be converted to the frequency domain 
before it can be applied to the transfer function. The calculated response is in the 
frequency domain, so it must be converted to the time domain to get the time response. 

time

Step

G(s)

Apply input to Transfer Function in the
Frequency Domain

s
1

s
sG 1)(=

time

?Convert back to
Time Domain

Convert Input to the
Frequency Domain

s
1

=

 
Figure 4: The basic process for finding the time response of a system 

 using transfer functions and the frequency domain. 

Functions are converted from the time domain to the frequency domain using the Laplace 
transform. Taking the Laplace transform of a system changes the problem from calculus 
to algebra, making it much easier to solve. For example, solving a 5th order polynomial is 
trivial compared to solving a 5th order differential equation. 
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First Order Transfer Functions and the Step Response 
One of the simplest transfer functions is the first order transfer function. It has the general 
form 

σ+
=

s
asG )( . 

A very common input type is the unit step. The unit step has a value of zero at times less 
than zero. At time equal to zero the unit step function changes to a value of 1. 

Time

t=0

1

 
Figure 5: The unit step function. 

Figure 5 depicts the unit step function in the time domain. To apply the unit step function 
as an input to a transfer function it needs to be converted to the frequency domain. The 
Laplace transform makes this conversion. The Laplace transform of a unit step is 

s
1 . 

Recall that the transfer function is the ratio of the system’s output over its input. 
Multiplying the transfer function by the input gives the output. This is very similar to 
performing unit analysis. 

.output
input
outputinput =⋅  

Applying this idea for a unit step input and the first order transfer function yields an 
output of 

( )σσ +⋅
=⋅

+ ss
a

ss
a 1 . 

This output response is in the frequency domain (because it is a function of s). Take the 
inverse Laplace transform of the output to convert it to the time domain. The inverse 
Laplace transform for this example is 

( )ta etg σ
σ

−−= 1)( . 

We have deliberately skipped the details of taking the Laplace transform and the inverse 
Laplace transform. With a little practice, is it possible to quickly determine the important 
parameters of the time response directly from the system’s transfer function in the 
frequency domain. 
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1) Sketch a plot of te−−1  on the axes below. Your calculator may be helpful. 

time  

All first order transfer functions have this 
shape as their step response! 

 

2) Write the equation for the step response (in the time domain) for the following first 
order transfer functions. Label each curve on the plot with its corresponding transfer 
function. Your calculator may be helpful in correlating each curve with its transfer 
function. 

  Transfer Function 
(Frequency Domain) 

Unit Step Response
(Time Domain) 

a 
1

1
+s

  

b 
2

2
+s

  

c 
1

2
+s

  

Step Response

Time (sec)

Am
pl

itu
de

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
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The step response of a first order system can be measured by two parameters. 

• Settling Time: This is the length of time it takes the system to reach its final 
value. 

• DC Gain: This is the value of the transfer function as frequency (s) approaches 
zero. Frequency approaching zero is equivalent to time approaching infinity. It is 
the ratio of the steady state output over the steady state input (the step magnitude). 

Settling Time 
Mathematically the system approaches its final value asymptotically. Theoretically it 
never actually reaches the final value. For practical purposes, the system is considered at 
its final value when it is within 2% of the asymptotic value4. 

Recall, the general form of the step response in the time domain is given by 

( )ta etg σ
σ

−−= 1)( . 

3) How are the values for DC gain and the settling time specified in this equation? 

DC Gain: Settling Time: 

In a first order transfer function 
σ
1  is the time constant of the system. The value of σ 

determines how quickly the system will approach its final value. 

4a) Find the settling time (Ts) in terms of σ by solving the following equation for t. Show 
each step! 

te σ−=%2  

 

Ts =  

 

Since these calculations are approximations of the system’s response, the answer above is 
rounded to 

σ
4

=sT  

4b) After one time constant has elapsed, σ
1=t , how close is a first order system to its 

final value? Hint: Solve te σ−−1 . 

Percent of System’s 
Final Value After One   = 
Time Constant 

 

                                                 
4 The 2% tolerance is common for measuring the performance of mechanical systems. In electrical 
engineering the performance tolerance on the final value is often 0.7% percent. 
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DC Gain 
A DC signal has a frequency of zero. Gain means multiplication. A system’s DC gain is 
the value of the transfer function at a frequency (s) of zero. This is the value the transfer 
function multiplies the input by at a frequency of zero. Recall 

Time
Frequency 1

= . 

Frequency approaching zero is equivalent to time approaching infinity. This means the 
DC gain of a transfer function is also the amount the input will be multiplied by as time 
approaches infinity. 

Figure 6 shows the unit step input and the response for the transfer function 

1
2)(
+

=
s

sG . 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Unit Step Response

Time (sec)

Am
pl

itu
de

Unit Step Input

First Order Response (Output)

 
Figure 6: The unit step input and first order response for a transfer function with a DC gain of 2. 

Figure 6 illustrates the transfer function is multiplying the input by two at steady state. 
Therefore, the transfer function has a DC gain of two.
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5) Calculate the DC gain and settling time for the following first order transfer functions. 

 Transfer 
Function 

DC gain 
(value at s=0) 

Settling Time 
(Ts) 

a 
1

1
+s

   

b 
1

2
+s

   

c 
2

2
+s

   

d 
5.0

3
+s

   

e 
16

32
+s

   

f 
8

8
+s

   

g 
8+s

s    

 

 6) Plot the unit step response for transfer functions 5d, 5e, and 5f on the axes below.  

time

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
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7) Write the first order transfer function for each plot of the unit step response. 

a) 

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Unit Step Response

Time (sec)

Am
pl

itu
de

 

G(s) =  

b) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Unit Step Response

Time (sec)

Am
pl

itu
de

 

G(s) =  
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 Systems with First Order Transfer Functions in 5 Energy Domains 
8) Specify the input and output parameters for each transfer function. Solve for their 
settling time and DC gain. 

System Transfer Function Ts DC Gain 

RC

R

s
s

sV
sIsG

1

1

)(
)()(

+
==  

R

CVin I

+

-  

Input: 
Output: 

 
 

 
 

L
R

L

ssV
sIsG

+
==

1

)(
)()(  

R

LVin I

+

-  
Input: 
Output: 

  

M
B

M

ssF
sVelsG

+
==

1

)(
)()(  

(M) Mass(F) Applied
Force

(B) Friction

(V) Velocity

 
Input: 
Output: 

  

J
B

J

ss
ssG

+
==

1

)(
)()(

τ
ϖ  

(J) Rotational Inertia of
Gear, Shaft and Prop

(B) Friction in Bearings

(τ) Applied
Torque

(ω) Rotational
Speed  

Input: 
Output: 

  

ff

f

CR

C

in ssQ
sPsG

1

1

)(
)()(

+
==

(Qin) Flow
Source: Pump

(Cf) Fluid
Capacitance: Tank

(Rf) Fluid
Resistance: Valve

(Qout) Fluid
Flow Rate(P) Fluid Pressure

Input: 
Output: 

  

tt

t

CR

C

ssQ
sTsG

1

1

)(
)()(

+
=

∆
=  

Input: 
Output: 

  

tt

tt

CR

CR

amb

obj

ssT
sT

sG
1

1

)(
)(

)(
+

==
(Cth) Thermal
Capacitance

(Rth) Thermal Resistance Between
Object and Suroundings due to

Conduction, Convection and Radiative Heat Xfr

(∆T) Temperature Difference  between
object and suroundings

(Q) Heat Flow
to/from object

 
Input: 
Output: 

  

Table 3: First order systems and their transfer functions in five energy domains. 
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For the systems pictured in questions 9 through 13, write a first order transfer function 
describing them and answer the associated questions. 

9) 

 
Figure 7: A skydiver has mass and 

friction. 

a) 

G(s)= 

b) Using the transfer function, show what happens to 
the skydiver’s velocity as friction increases. 

 

c) Does mass of the skydiver affect the DC gain of the transfer function? 

 

 

 

 

d) How does increasing the mass of the skydiver affect his final speed? Why? 

 

 

 

 

e) Is the magnitude of “terminal velocity” affected by the transfer function’s DC gain or 
settling time? 
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10) Reciprocating engines (like the one in a car or steam engine) produce varying 
amounts of torque. They produce the most torque when a cylinder is firing. When no 
cylinders are firing, no torque is generated. A flywheel is used to smooth out the rotary 
motion produced by the engine. The momentum of the flywheel keeps the engine rotating 
when a cylinder is not firing. 

Flywheel  
Figure 8: Flywheels are used to  smooth the output of external 

(left) and internal (right) combustion engines. 

a) 

G(s)= 

 

b) Which parameter in the transfer function determines how well the flywheel smoothes 
out the rotary motion of the engine? Does this parameter change the steady state speed of 
the engine (i.e. the DC gain of the transfer function)? 

 

 

 

 

 

c) Is it desirable to have a long or short settling time for a flywheel? Why? 

 

 

 

 

 

d) What are two methods of adjusting the settling time of the flywheel? Why is one of 
these methods undesirable in an engine?
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11) The nuclear fuel in a reactor generates heat. This heat flows from the fuel through the 
cladding and to coolant. The coolant transports this heat to the steam generators where it 
is used to make steam and do work. 

(a)

Nuclear Fuel Producing
Heat

Cladding to
Contain the Fuel

Coolant to Remove Heat from the
Fuel Rod and Transport it to the

Steam Generators

Tfuel

Tcoolant

Heat Flow from
Fuel to Coolant

(b)  
Figure 9: Nuclear fuel elements for the cargo ship NS Savannah (a), the only civilian nuclear 
vessel ever constructed . It was not commercially viable. A simplified diagram of the heat flow 

from the fuel to the coolant (b). 

a) Hint: This question is about heat flow. 

G(s)= 

b) Which parameter in the transfer function will determine the steady state temperature 
difference between the fuel and the coolant? How can this temperature difference be 
minimized? 

 

 

 

 

 

c) Which parameter(s) in the transfer function determine how quickly the temperature 
difference will occur when the reactor starts generating heat? What physically determines 
the value of the parameter(s).
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12) Large metal objects, like ships, take a significant amount of time to heat up and cool 
down. The environment around the ship will heat up and cool down much more quickly. 

(a) (b)  
Figure 10: Thermal images of a ship several hours after sunset (a) 

 and of another ship several hours after sunrise (b). 

Figure 10a shows a thermal image of a ship several hours after sunset. The ocean and 
atmosphere have cooled down faster than the ship. The ship will remain warmer than the 
environment for many hours after sunset. The thermal imaging system indicates this by 
displaying the ship as lighter than its surroundings. 

Throughout the night, the ship’s temperature cools down to match the ambient 
temperature. Figure 10b shows a thermal image of a ship a few hours after sunrise.  The 
environment has warmed up much faster than the ship. The thermal imaging system 
indicates this by displaying the ship as darker than its surroundings. 

a) What type of ships are shown in Figures 10a and 10b? 

Ship Type 10a: Ship Type 10b: 

b) Write a first order transfer function which describes 
how the temperature of the ship responds to the changes 
in ambient temperature. 

c) What is the ship’s temperature in steady state? How is this indicated by the transfer 
function? 

 

d) How much heat is flowing to/from the ship if it is at ambient temperature? 

 

e) Does increasing the thermal mass (capacity) of the ship change the settling time for the 
temperature of the ship? Why? 

 

f) Does increasing the thermal resistance of the ship change the settling time for the 
temperature of the ship? Why? 

 

f) Does the thermal resistance change the final temperature of the ship? Why? 

G(s) = 
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13) Water towers are often used as a pressure source for municipal water systems. A 
pump supplies the water to keep them full. 

 
Figure 11: A water tower provides a 
fluid reservoir at a pressure for the 

town’s water system. 

a) 

G(s) =  

b) In the municipal water system, what physically 
determines the two parameters of the system’s 
transfer function? 

 

 

 

 

 

c) If the flow to the water tower is stopped, what 
happens to the pressure of the municipal water 
supply? Explain using the transfer function. 

 

 

d) During commercial breaks in the Super Bowl the system pressure of the municipal 
water system will drop dramatically. Explain why in terms of the transfer function. 

 

 

 

 

 

e) If water departments want to minimize the pressure drop during commercial breaks, 
which parameter of the system should they improve? Why can they not “improve” the 
other parameter? 
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Input Types 
We will examine 4 common signals and apply them to a range of transfer functions. 
These signals are similar to the three wave types introduced in Lesson 1c. 

 Time 
Domain 

Freq 
Domain Notes and Example 

U
ni

t I
m

pu
ls

e 

Time

t=0

Area = 1 )(tδ  1 

The unit impulse function is 
infinitely high and narrow such 
that the area under the curve is 1. 

Example: A short duration 
transient, from striking an object 
with a hammer. 

U
ni

t S
te

p 

Time

t=0

1 )(tu  
s
1  

At time 0 the function u(t) 
changes value from 0 to 1. 

Example: Applying a constant 
voltage starting at time 0, by 
turning a switch on. 

U
ni

t R
am

p 

Time

t=0

slope = 1
t  2

1
s

 

At time 0 the unit ramp function 
starts increasing with a slope of 1. 

Example: The position of an 
object vs. time for an object 
moving at a constant velocity. 

U
ni

t P
ar

ab
ol

a 

Time

t=0

2t  3

1
s

 

At time 0 the unit parabolic 
function starts increasing as a 
function of time squared. 

Example: The position of an 
object vs. time for an object 
moving with constant acceleration 
(falling). 

Table 1: Four basic input types and their representations in the time and frequency domains. 

Table 1 shows the unit form of all these signals. In the unit form their key parameter has 
a value of 1. Real signals usually have values other than 1. In this case the unit function is 
multiplied by the magnitude of the signal. For example: 

a) 5 volts is applied to a circuit, by closing a switch at time 0. This input signal would be described 
as 5 times the unit step. )(5 tu  in the time domain or s

5  in the frequency domain. 

b) A hammer strikes an object with force of 10N. This input signal would be described as 10 times 
the unit impulse function. )(10 tδ  in the time domain or 10 in the frequency domain. 
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The Final Value Theorem 
The final value theorem is a fast way of calculating the steady state value of a transfer 
function for a specific input. The final value theorem (FVT) states 

)()(lim 0 sGsinputsValue seSteadyStat ⋅⋅= → . 

Where G(s) is the transfer function and the input are specified in the frequency domain. 
Don’t forget the additional s term! 

Figure 1 illustrates the output for a unit step applied to the transfer function 

13
5)( 2 ++

=
ss

sG . 

Initially the output is changing, this is called the system’s transient response. Once the 
output has stopped changing, at about 7 seconds in this example, the system has reached 
its steady state. This is called the steady state response or the system’s final value. 

Response for Unit Step Input

Time (sec)

Am
pl

itu
de

0 5 10 15
0

1

2

3

4

5

6

 
Figure 1: The output of a unit step applied to the example G(s) vs. time. After about 7 seconds the output is 

no longer changing and the system has reached steady state (or its final value). 

Using the final value theorem to calculate the system’s steady state response yields. 

5
13

51lim 20 =
++

⋅⋅→ sss
ss . 

The first s term and the s
1  cancel each other out. The s terms in the denominator of the 

transfer function are set to zero, leaving 5
1
51 =⋅ . 
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Final Value Theorem Exercise 
For each of the inputs and transfer functions below find the system’s steady state value 
using the final value theorem. Additionally, state the type of input being applied to the 
system or give its function in the frequency domain. 

 Input Transfer 
Function 

TF’s 
DC Gain 

Final 
Value 

Input Type or 
Freq Domain 

 
s
1  

22
4

2 ++ ss
 2 2 unit step  

 unit ramp 
32

3
2 ++ ss

 1 ∞ 2

1
s

 

a 
s
5  

3
15

2 ++ ss
 

 
  

b 2

4
s

 
43

12
2 ++ ss

 
 

  

c unit step 
32

6
2 ++ ss

 
 

  

d 5 
32

6
2 ++ ss

 
 

  

e 2

1
s

 
32

6
2 ++ ss

s  
 

  

f 3

1
s

 
32

21
2 ++ ss

 
 

  

g unit impulse 
52

25
2 ++ ss

 
 

  

h 4 
ss 5

35
2 +

 
 

  

i step of 
magnitude 5 432

12
23 +++ sss

 
 

  

j impulse of 
magnitude 6 ss 5

5
2 +

 
 

  

k 3

25.0
s

 
1

12
2

2

++ ss
s  
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Second Order Systems 
Second order systems are systems with 2 energy storage elements. The table below 
illustrates second order systems in four different energy domains. For each system 
specify the energy storage elements (kinetic and potential energy) and the dissipative 
elements (DE). For each system’s transfer function specify the input and the output. 

System Transfer Function Elements 

LCL
R
L

ss
s

sV
sIsG

12

1

)(
)()(

++
==  R

CVin I

+

-

L

 

Input: 
Output: 

KE: 

 

PE: 

 

DE: 

LCRC

RLCR

ss
s

sV
sIsG

112

121

)(
)()(

++
+

==  
R

CVin I

+

-

L

 

Input: 
Output: 

KE: 

 

PE: 

 

DE: 

M
K

M
B
M

sssF
sXsG

++
== 2

1

)(
)()(  

(M) Mass (F) Applied
Force

(B) Friction

(X) Position(K) Spring

 
Input: 
Output: 

KE: 

 

PE: 

 

DE: 

 

J
K

J
B
J

sss
ssG

++
== 2

1

)(
)()(

τ
θ  

(J) Rotational Inertia of
Gear, Shaft and Prop

(B) Friction in Bearings

(τ) Applied
Torque

(θ) Angular
Position

(K) Twisting of Shaft

Shaft is long enough to allow twisting.

 

Input: 
Output: 

KE: 

 

PE: 

 

DE: 

ffff

f

CICR

C

in ss

s

sQ
sPsG

112

1

)(
)()(

++
==  

Input: 
Output: 

fff

f

f

CII
R

I

ss

s

sP
sQsG

12

1

)(
)()(

++
==  

(Qin) Flow
Source: Pump

(Cf) Fluid
Capacitance: Tank

(Rf) Fluid Resistance:
Valve and Pipe

(Qout) Fluid
Flow Rate

(P) Fluid Pressure

A long length of pipe allows
fluid to build up inertia.

(I) Fluid Inertia

Input: 
Output: 

KE: 

 

PE: 

 

DE: 
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The Second Order Responses 
A first order system only has one response to a step input (Lesson 2b). A second order 
system has two energy storage elements. It is possible for energy to pass back and forth 
between them, in addition to being dissipated out of the system. This complexity allows 
for many different responses. 

A second order system can exhibit 6 possible responses to a step input. These are 
illustrated in Figure 1. The type of response is determined by the relative size of the 
energy storage elements and the amount of energy dissipation (friction) in the system. 
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Figure 1: The six possible time responses for a 2nd order system. 

1a) Which of these 6 cases has the most friction, zero friction, and “negative friction”? 

 

 

 

1b) Do any of the cases ever reach an exact final value? 
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The Characteristic Equation 
A second order system’s transfer function specifies which of the 6 responses the system 
will exhibit. The response is determined by the transfer function’s characteristic 
equation. 

The characteristic equation is the denominator 
of the transfer function set equal to zero. 

For example, the transfer function for a mass-spring-damper is 

M
K

M
B
M

ss
sG

++
= 2

1

)( . 

Its characteristic equation is 

02 =++ M
K

M
B ss . 

For a second order system the characteristic equation is a quadratic. The solution to the 
quadratic equation (its roots) has 6 forms. Each corresponds to a different second order 
response. 

The form of the characteristic’s equation’s roots specifies the system’s response! 

Table 1 lists the 6 possible forms for the roots of a second order system’s characteristic 
equation and the type of response which corresponds to each. Also listed is value for the 
damping ratio. The damping ratio is a measure of energy dissipation vs. energy storage 
in the system. The value of the damping ratio also corresponds to the type of response. 
Roots of Characteristic Equation Example Response Damping Ratio (ζ) 
Real, Negative and Distinct s = -2 and -4 Over Damped ζ > 1 

Real, Negative and Repeated s = -2 and -2 Critically Damped ζ = 1 

Complex w/ Negative Real Parts s = -2 ± 3i Under Damped 0 < ζ < 1 

Complex w/ NO real parts s = ± 4i Marginally Stable ζ  = 0 

Complex w/ Positive Real Parts s = 2 ± 3i Unstable Oscillating -1 < ζ < 0 

Real and Positive s = 2 and 4 Unstable Non-Oscillating ζ  ≤ -1 

Table 1: The system response and range of ζ for the range of roots of s. 

There is a pattern between the form of the roots and the system’s response. 

• If the roots are complex, the system oscillates. 

• If all the roots’ real parts of are negative, the system is stable. 

• If any of the roots’ real parts are positive, the system is unstable. Zero is 
considered a positive number. 
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1c) Plot the roots of the characteristic equation which would give the response. Sketch 
the step response in the time domain. Give the value for the damping ratio. 

Over Damped 

 

ζ: 
σ

jω

Time

Critically Damped 

 

ζ: 
σ

jω

Time

Under Damped 

 

ζ: 
σ

jω

Time

Marginally Stable 

 

ζ: 
σ

jω

Time

Unstable 
Oscillating 

 

ζ: σ

jω

Time

Unstable 
Non-Oscillating 

 

ζ: σ

jω

Time
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Mass Spring Damper Example 
Consider the following simple mass spring damper system. With the following 
properties: M=10 kg, K=40 N/m, and B=20 Ns/m 

(b)

t=0
time

Applied Force f(t)

f=0

f=F

(a)

x(t)

f(t)

Mass (M)

Spring (K)

Damper (B)

 
Figure 2: The mass spring damper system (a) and the force applied to it as a function of time (b). 

Figure 2a illustrates the mass spring damper system. From time zero onwards a constant 
force F is applied to the system as illustrated by Figure 2b. The system’s response (its 
motion) is measured by x(t). 

2a) What kind of wave form is this force input (Lesson 1c)?  

 

2b) With an applied force F of 100N, how far do you expect the 
mass to move (Hook’s Law)?  

 

2c) Describe how the mass would move with no 
friction in the system (no damping). Make a sketch 
of x(t).  

 

 

2d) Describe how the mass would move with a 
small amount of friction in the system.  Make a 
sketch of x(t). 

 

 

2e) Describe how the mass would move with a very 
large amount of friction in the system. Make a 
sketch of x(t). 

xfinal =

time

x(t)

time

x(t)

time

x(t)
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3a) Describe how the mass would move with no 
spring in the system Make a sketch of x(t).  

 

 

 

3b) Describe how the mass would move with a 
weak spring in the system. Make a sketch of x(t). 

 

 

 

3c) Describe how the mass would move with a very 
stiff spring in the system. Make a sketch of x(t). 

 

 

 

The transfer function for this mass spring damper system is 

M
K

M
B
M

sssF
sXsG

++
== 2

1

)(
)()( . 

4a) For this transfer function which parameter is the input and 
which parameter is the output (Lesson 2b)? 

 
 

4b) Use the final value theorem (Lesson 3a) to calculate the final position of the mass for 
the 100N step input. Use the above transfer function with the correct values of M, B, and 
K substituted. Does this answer agree with your answer to question 2b? 

 
 

4c) Which of these cases could the mass spring damper system exhibit. Assume the 
values for M, B and K are all greater than zero. 

 

 

4d) Which of these cases could NOT be exhibited by the mass spring damper system? 
Why not? Assume the values for M, B and K are all greater than zero. 

 

 

Output
Parameter

Input
Parameter

time

x(t)

time

x(t)

time

x(t)

xfinal =
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5a) As the under damped mass spring damper system oscillates back and forth, its energy 
is stored in the different energy storage elements (the spring and the mass).  Annotate the 
plot below with the points where the system’s energy is stored entirely in the spring and 
where it is stored entirely in the mass. 
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5b) What is happening to the total energy in the system? How does the above plot show 
this? What is causing this?
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6) For each of the following transfer functions, find the characteristic equations, its roots, 
and its response type. J and K are tricky! 

 
 Transfer Function Characteristic 

Equation Roots Response Type 
Name & Sketch 

a 
65

2
2 ++ ss

 
   

b 
482

4
2 +− ss

 
   

c 
1062

20
2 ++ ss

 
   

d 
16

16
2 +s

 
   

e 
2510

100
2 ++ ss

 
   

f 
82

8
2 +− ss

 
   

g 
6.31210

25.4
2 ++ ss

 
   

h 
1036

10
2 ++ ss

 
   

i 
118

22
2 ++ ss

 
   

j 
ss 5

2
2 +

 
   

k 
28

2
2 −+ ss
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Using ltiview 
Next we will use MATLAB to test our predictions for the mass spring damper’s 
response. See the MATLAB help section of the workbook to learn how to enter 
transfer functions in MATLAB.  

Write the system’s transfer function, substituting the 
values of M, B, and K into the transfer function. 

 

7a) To display the system’s response to a unit step input, enter the transfer function into 
MATLAB and run the command ltiview(‘step’,G).1 What is the final displacement of 
the mass as displayed by MATLAB? Does this match your predictions in questions 2b 
and 10? Why or why not?   

 

 

7b) Using ltiview answer questions 6 through 11 again. 

• Print two plots. One plot with questions 2c, 2d, and 2e on the same graph, and 
another plot with questions 3a, 3b, and 3c on one graph. 

• Label the curves with their question number and “high friction”, “low friction”, 
“no friction”, “strong spring”, “weak spring”, or “no spring” as appropriate. 

Write the transfer function used for each curve below. 

 

 

 

 

 

 

 

 

20) Which aspects of the time response were affected by changing the friction (B) and 
spring stiffness (K)? 

 

                                                 
1 Assuming the transfer function was saved in MATLAB as the variable “G”. If the variable was named 
something else, then use that name instead of “G”. 

G(s) =

xfinal =

G2c(s) = G3a(s) =

G2d(s) = G3b(s) =

G2e(s) = G3c(s) =
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Time Response Parameters 
A system’s time response is measured by several quantitative parameters calculated from a 
system’s characteristic equation. The general form of the characteristic equation is 

0)2( 22 =++ nn ss ϖζϖ . 

In the general form, the coefficient of the s2 term must be 1! 

Parameter Description 

Sigma 

σ  

Sigma is found from the roots of the characteristic equation. It is the opposite of the root’s 
real part. 

For example, if the roots are is 42 ±−= , then 2=σ . 

For critically and under damped systems, nζωσ = . 

For over damped systems where the roots are real and distinct, there are two sigma values. 
For example, if the roots are 10&4 −−=s , then 41 =σ  and 102 =σ . 

Damped 
Frequency of 
Oscillation 

dϖ  

This is the frequency the system oscillates at. 

dϖ  is the imaginary part of the characteristic equation’s roots. 

For example, if the roots are is 42 ±−= , then sec4 rad
d =ϖ . 

Remember 
T

f Hz
1

=  and 
T

f rad

π2
sec

= . dϖ  must be in sec
rad for calculations! 

Damping Ratio 

ζ  

This is a measure of how much friction or energy dissipation there is in a system. 0=ζ  
corresponds to no friction. 1=ζ  corresponds to just enough friction to keep the system 
from oscillating back and forth (critically damped). 

If 1>ζ  the system is over damped. 

Natural 
Frequency nϖ  

nϖ  combines the effects of both ζ  and dϖ . 

This is the frequency the system will oscillate at with no friction in the system. 

Settling Time 

σ
4

=sT  

The time at which the response no longer exceeds 2% of its final value. 

For under and critically damped systems 
n

sT
ζϖσ

44
== . 

For over damped systems, use the sigma value which makes the settling time longest! 

Peak Time 

d
pT

ϖ
π

=  

The time at which the function reaches it maximum peak. 

For critically and over damped systems, ωd = 0 (no imaginary part) therefore the peak time 
is infinite (it never has a peak). 

Percent 
Overshoot 

s

p

T
T

eOS
4

100%
−

=  

The amount the function’s maximum peak exceeds the final value, as a percentage of the 
final value. 

0% =OS  for critically and over damped systems, ∞=⇒= pd T0ϖ  and 0=−∞e . 
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The Three Questions 
When analyzing a second order system there are three important questions. 

1. Is the system stable? Use the roots of the characteristic equation to determine 
stability. 

2. Is the system’s steady state value acceptable? Alternatively, how much is the 
error from the desired value? Use the final value theorem to determine if the 
system’s final value is adequate for the design or application. 

3. Is the system’s transient response acceptable? There are several aspects of the 
system’s transient response which could make the response unacceptable: 

a. Does the system get to its final value fast enough (settling time)? 

b. Does the system overshoot its final value too much (%OS)? 

c. Is the number of oscillations too many (ζ)? 

d. Is the frequency of oscillation too high ( dω )? 

Measuring the Time Response Parameters 
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Figure 1: The time response of an under damped system. 

1) Using Figure 1, find the values for dϖ , sT , pT , and OS% . Annotate the plot to show 
where the values were read from. 
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DC Gain 
The DC gain of a transfer function is the amount it amplifies (multiplies) the input by when 
all the transients have died out, as time goes to infinity. Time going to infinity is the same 
as frequency going to zero ( Tf 1= ). 

TF w/
DC Gain = 2

Input = 1 Output = 2

TF w/
DC Gain = 4

Input = 2.5 Output = 10

 
The DC Gain is found by taking the limit of the transfer function as s approaches 0. The 
DC Gain can also be found when system’s input and its steady state output are known. 

2) Complete the table below. 

 Transfer Function or Response DC Gain 

a 
53

5)( 2 ++
=

ss
sG   

b 
13

10)( 2 ++
=

ss
sG   

c 
3210

6)( 2 ++
=

ss
sG   

d 
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Calculating Time Response Parameters 
The system’s time response parameters can also be calculated directly from the 
characteristic equation for the transfer function. 

Consider the transfer function 

105.0
10)( 2 ++

=
ss

sG . 

3a) Write the transfer function’s characteristic equation. 

Characteristic Eqn  
If the coefficient of the 2s  term is one, then the terms of the characteristic equation map 
nicely to several time response parameters. The general form of the characteristic equation 
is 

0)2( 22 =++ nn ss ϖζϖ . 

Additionally, the roots of the characteristic equation also map to several time response 
parameters. The general forms for the roots of the characteristic equation are 

iis dnd ϖζϖϖσ ±−=±−= . 

3b) Find the roots of the characteristic equation from question 3a and label the horizontal 
and vertical axes of Figure 2 with the correct symbolic values. 

Roots of Characteristic Eqn  

Real Axis (σ)

Imaginary Axis (jω)

ωn

 
Figure 2: A root of the characteristic equation plotted on the complex plane. This shows the relationship 

between nϖ , dϖ , and ζ . 
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3c) Write an equation which describes the relationship between nϖ , dϖ , and ζ .  

Eqn  
3d) Calculate nϖ , dϖ , and ζ  for the characteristic equation in question 3a. Calculating 

nζϖ  is often a useful intermediate step. 

ωdωn ζζωn  
 

After the parameters nϖ , dϖ , and ζ  have been calculated,  the remaining time response 
parameters are found with the equations: 

σ
4

=sT , 
d

pT
ϖ
π

= , and s

p

T
T

eOS
4

100%
−

= . 

Remember, when calculating settling times for over damped systems, 
use the σ which gives the longest settling time! 

3e) Find the settling time, peak time, and percent overshoot for this system. 

Ts Tp %OS  
3f) Complete the table below (pay attention to j). 

 Characteristic 
Equation Roots Response

Type nϖ  nζϖ  ζ  dϖ  Ts Tp %OS 

a 0842 =++ ss           

b 02372 =++ ss           

c 010502 =++ ss           

d 012 =++ ss           

e 0932 =++ ss           

f 06362 =++ ss           

g 03092 =++ ss           

h 046142 2 =++ ss           

i 02092 =++ ss           

j 036122 =++ ss           



 ES360 Introduction to Controls Engineering 

 Lesson 4: Second Order Time Response Calculations 

 Page 6 of 8 

4a) Using a sketch of the complex plane, explain why the natural frequency is the 
frequency the system oscillates at when the there is no friction. 

Hint: What is the value of ζ when there is no friction. 

 

 

 

 

 

 

 

4b) For the transfer function G(s) explain how increasing b, c, and d will affect the time 
response parameters. 

Hint: A sketch of the complex plane will be useful. 

csbs
dsG

+⋅+
= 2)(  

 

Parameter ωn ζωn ζ ωd Ts Tp %OS DC Gain 

b↑         

c↑         

d↑         
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5) Answer the following questions about the RLC circuit pictured below. 
R

CVin I

+

-

L

 
a) Write a transfer function for this system with voltage as the input and current as the 
output. 

 

 

 

b) If a step input of 10 volts is applied to system what is the steady state current? Explain 
physically why this happens. 

 

 

 

c) If the resistor has a value of 6 Ohms and the Inductor is 1mH, how big should the 
capacitor be to make the system critically damped? 

 

 

 

 

 

 

 

d) As the value of the resistor increases explain what happens to each of the time response 
parameters. 

Parameter ωn ζωn ζ ωd Ts Tp %OS DC Gain 

R↑         
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6) Answer the following questions about the recoil mechanism of the Beretta M9 Pistol. 

  
 

a) Write a transfer function for this system describing the recoil mechanism’s position for 
an applied force. 

 

 

 

 

 

b) Label the components in the photos above which contribute to each parameter in the 
transfer function. 

 

 

d) As the stiffness of the spring decreases explain what happens to each of the time 
response parameters. 

Parameter ωn ζωn ζ ωd Ts Tp %OS DC Gain 
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Graphical Analysis of Second Order Responses 
Transfer functions can be estimated for a system without knowing the internal 
configuration of the system. All that is required is to measure the system’s output as a 
response to a known input. With this information it is possible to solve for the system’s 
transfer function. This is a powerful and useful concept, particularly when modeling 
actual hardware. 

First Order Review 
The concept of deriving a transfer function from a response was introduced for first order 
systems in Lesson 2b. Recall that the transfer function for a first order system is 

σ+
=

s
asG )( . 

Three steps are required to find a first order transfer from a system’s step response. 

1. Solve for σ by either: 

a) Find the time the response is at 63% of its final value. This time is the time 
constant σ1 . Solve for σ. 

or 
b) Find the settling time for the system (the response is at 98% of its steady state 

value1).  Use 
σ
4

=Ts  to solve for σ . 

Method 1a is usually a more accurate way of determining σ. 

2. Divide the system’s steady state value by the magnitude of the step input to find its 
DC gain. A unit step has a magnitude of 1. 

3. The DC gain is the value of the transfer function as s approaches zero. Use the DC 
gain and σ to solve for the numerator of the transfer function. 

σ
σσ gainsgain DCaa

s
aDC =⇒=
+

= →0lim  

                                                 
1 The system is considered to be at steady state when it is within 2% of its final value (98% of the system’s 
steady state value). 
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1) Find the first order transfer function for the following plot: 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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G(s)= 

Second Order Systems 
Second order systems are more complicated because their transfer functions have more 
variables and the system can exhibit several possible responses. 

The general forms for a second order transfer function and its characteristic equation are: 

csbs
dsG

+⋅+
= 2)(  and 02 222 =+⋅+=+⋅+ nn sscsbs ωξω . 

There are 6 major steps to finding the transfer function for a second order response. 

1. Measure the Peak Time, Tp, and calculate the damped frequency of oscillation, dϖ . 

2. Measure the system’s steady state value, xss, and peak value, xpeak. 

3. Calculate %OS with 
ss

sspeak

x
xx

OS
−

=% . 

4. Using the peak time, Tp, and %OS solve for nζω2 . nps

p

TT
T

eeOS ζω−
−

==
4

%  yields 

( )
P

n T
OS%ln−

=ζω . 

5. Solve for the natural frequency, nω , with ( )22
ndn ζωωω += . 

6. Solve for the coefficients of the transfer function using 

nb ζω2= , 2
nc ω= , and 

input

ss

magnitude
xc

d
⋅

= . 
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2) A unit step applied to a system generates the following response. Use the plot to find 
the values for: dϖ , Ts, Tp, %OS, and DC Gain. 
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dϖ  = _______  Ts = _______  Tp = _________  %OS = ________   DC Gain = _______ 

Find the transfer function which gives the response depicted above. 
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3) A step of magnitude 2 is applied to a system generates the following response. Use 
the plot to find the values for: dϖ , Ts, Tp, %OS, and DC Gain. 
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dϖ  = _______  Ts = _______  Tp = _________  %OS = ________   DC Gain = _______ 

Find the transfer function which gives the response depicted above. 
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4) A unit step applied to a system generates the following response. Use the plot to find 
the values for: dϖ , Ts, Tp, %OS, and DC Gain. 
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dϖ  = _______  Ts = _______  Tp = _________  %OS = ________   DC Gain = _______ 

Find the transfer function which gives the response depicted above. 
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5) A unit step applied to a system generates the following response. Use the plot to find 
the values for: dϖ , Ts, Tp, %OS, and DC Gain. 
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dϖ  = _______  Ts = _______  Tp = _________  %OS = ________   DC Gain = _______ 

Find the transfer function which gives the response depicted above. 
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6) A unit step applied to a system generates the following response. Use the plot to find 
the values for: dϖ , Ts, Tp, %OS, and DC Gain. 
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dϖ  = _______  Ts = _______  Tp = _________  %OS = ________   DC Gain = _______ 

Find the transfer function which gives the response depicted above. Hint: There is an 
easy and a difficult way of solving this question. 
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7) A unit step applied to a system generates the following response. Use the plot to find 
the values for: dϖ , Ts, Tp, %OS, and DC Gain. 
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dϖ  = _______  Ts = _______  Tp = _________  %OS = ________   DC Gain = _______ 

Find the second order transfer function which gives the response depicted above. 

 

 

 

 

 

 

 

 

Compare the values of dω  and nω . What is significant about the results of this 
comparison? Using the complex plane explain why. 
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Measurement of an Actual Second Order Response 
This lesson will examine the step response of a second order mass spring damper system. 
The time response will be used to determine the transfer function of the system. 

Lesson 5a, Analysis of Second Order Responses, 
must be completed before starting this lesson. 

The System 
The system consists of a vertical mass, spring, and damper. Two variants of a vertical 
mass spring damper system are shown in Figure 1. 

Hanging Mass Spring Damper System
(a)

Cantilevered Beam

Mass (optional)

Ruler

Zero Measurement

Steady State
Measurement

Maximum
Measurement

Mass

Spring

Ruler

Zero Measurement

Maximum
Measurement

Steady State
Measurement

Steady State Displacement

Maximum Displacement

Cantilevered Mass Spring Damper System
(b)

 

Figure 1: A hanging mass spring damper system with separate components (a). 
A cantilevered beam is also a vertical mass spring damper system (b). 

This system is slightly different from mass spring damper systems presented in Lessons 3 
and 4. Because it is vertical, the applied force is proportional to the system’s mass 

mgF = . 

At time zero the mass will be released and the gravitational force applied as a step input 
to the system. 

(b)

t=0
time

Applied Force f(t)

f=0

F=mg

(a)

Spring (K)Damper (B)

Mass (M)

Applied Force
(F=mg)Position (x)

 
Figure 2: The model of the mass spring damper system (a) and 

the gravitational force applied as a step input (b). 
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1) Write a second order transfer function which relates the position of the mass to the 
applied force. 

G(s) = 

2a) Of the three parameters in the transfer function, which is the easiest to measure? 
Which is the most difficult to measure? 

Easiest to 
Measure 

Hardest to 
Measure 

 

2b) The damper component is not labeled in Figures 1a and 1b. Where is the damper in 
these systems? 

 

 

2c) Which parameters of the transfer function change as the cantilevered beam is 
shortened? How do these parameters change? 

 

 

3) Using the final value theorem, solve for the steady state position of the mass in term of 
the parameters in the transfer function.  

Xss = 

 

4) Write the six steps for deriving a second order transfer function from the under 
damped response of a system.  
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This lesson can be accomplished with either the hanging mass spring damper shown in 
Figure 1a or the cantilevered beam shown in Figure 1b. 

All calculations should be done in metric units1. 

5) Measure or calculate the following: 

Lab Setup (Circle One): Hanging Mass  Cantilevered Beam 

Line Parameter  English Metric Notes 

1 Gravity g   m/s2 9.8  

2 Mass M   kg   

3 Zero Measurement  in  m   

4 Steady State Measurement  in  m   

5 Steady State Displacement Xss in  m  line 4 - line 3 

6 Spring Constant K   N/m   

7 Cantilevered Beam Length L   m  Cant. Beam Only 

 

Release the mass from the zero measurement point and record the peak time, period of 
oscillation, and maximum displacement. Perform four trials and average the results. 

It is easiest to have a single person dedicated to measuring each parameter (Tp, period of 
oscillation, and maximum measurement). 

Trial Period of Oscillation Peak Time Maximum Measurement 

1    

2    

3    

4    

Average    

 

6a) From the average maximum measurement calculate the average maximum 
displacement, see Figure 1. Calculate the %OS for the system. 

Average Maximum 
Displacement  Average %OS  

                                                 
1  1 inch = 2.54 cm = 0.0254 m 1 lb = 0.453 kg = 453 grams 
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6b) Use the period of oscillation and the peak time data to calculate two values for the 
damped frequency of oscillation, dϖ . 

The dϖ  calculated from the peak time is already in rad/sec. The dϖ  calculated from the 
measured period of oscillation must be converted from 1/sec to rad/sec. (see Lesson 4) 

=dω  

From Period Measurement 

=dω  

From Peak Time Measurement 

6c) Which value of dϖ  do you have more confidence in? Why? 

 

 

6d) Solve for the transfer function of the system and find the value of the friction term B. 

G(s) = 

 

B = 

 

7) For the step input of magnitude F=mg applied to the above transfer function, 
calculate the time response parameters. 

Characteristic Equation   % Diff from 
Measured 

Roots of the Characteristic Equation  dϖ   

System Response Type:
(Over Damped, Critically Damped, Under Damped, 

Unstable)

 Ts   

nϖ  Tp   

nζϖ  %OS   

ζ  DC Gain   

 

 

 

 

Calculate the percent difference between the measured values and calculated values for 
dϖ , Ts, Tp, %OS, and DC gain. 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
measured

measuredcalculateddiff 100%  
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Modeling an F/A-18 Landing 
The landing gear on an aircraft is designed to support the aircraft and dissipate its energy 
during landing. If the landing gear is compressed completely on landing, any remaining 
energy will be dissipated by the airframe possibly damaging it. 

For this simulation the aircraft and its landing gear are modeled as the “spring mass 
damper” system illustrated in Figure 1. 

The weight of the aircraft changes during flight as fuel is burned and ordnance is 
released. Typical limits and values for an F/A-18 are listed in Table 1. 

Spring (K)Damper (B)

Mass (M)

 
Figure 1: The spring mass damper model of an F/A-18 landing gear. 

F/A-18 Model Parameters 
Basic Empty Weight MBEW 14,300 Kg 

Maximum Landing Weight, Carrier MMLC 19,900 Kg 
Maximum Landing Weight, Field MMLF 22,700 Kg 

Maximum Take Off Weight MMTO 29,900 Kg 
Damper B 150,000 Ns/m 
Spring K 700,000 N/m 

Maximum Landing Gear Compression ymax 1 m 

Table 1: The F/A-18 model parameters and typical loading conditions. 

Questions: 
1) If an F/A-18 at maximum takeoff weight and has an emergency shortly after take off, 
how much fuel and ordnance must be jettisoned prior to landing at an airfield? How 
much would have to jettisoned for landing on a carrier? Report your answers in both kg 
and tons (1kg = 2.2 lbs and 1 ton = 2000 lbs). 

 kg tons 

Weight jettisoned for landing at an airfield   

Weight jettisoned for landing on a carrier   
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2) Calculate the expected steady state displacement of the aircraft’s landing gear, in 
meters, for all four of the loading conditions (use Hook’s Law). 

Found Via Hooks Law MBEW MMLC MMLF MMTO 

Steady State Gear Displacement [m]     

 

 

 

Use MATLAB and the Simulink model of the F/A-18’s landing gear to answer questions 
3 through 5. The section “Running the F/A-18 Simulation” on page 4 has step by step 
instructions for using this Simulink model. 

3) Check your answers to question 2.  How closely did the simulation match your 
answers? 

Found via Simulink MBEW MMLC MMLF MMTO 

Steady State Gear Displacement [m]     

 

4) Find the maximum decent rate, in feet per minute [fpm] and maximum acceleration 
[G’s], for field landings which will not fully compress the landing gear.  

Max Decent Rate, Carrier Landing [fpm] Max Acceleration, Carrier Landing [G's]  
 

5) Find the maximum decent rate, in feet per minute [fpm] and maximum acceleration 
[G’s], for carrier landings which will not fully compress the landing gear. 

Max Decent Rate, Field Landing [fpm] Max Acceleration, Field Landing [G's]  
 

6) Explain why changing the mass of the aircraft changes the maximum allowable decent 
rate and maximum acceleration of the aircraft. 
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7) A more typical decent rate on landing is -600 fpm. Find the maximum acceleration and 
minimum distances from full landing gear compression for field and carrier landings 

Landing at -600 fpm 
& Max Landing Weight 

Maximum Gear 
Compression [m] 

Maximum 
Acceleration [G’s] 

Field    

Carrier   

 

8) Run the simulation and print the results, with a decent rate of -600 fpm at maximum 
carrier landing weight. Run the simulation with a spring stiffness of 350,000 N/m (half 
stiffness) and 1,400,000 N/, (twice stiffness). Print these results. 

As spring stiffness increases how does maximum displacement, steady state 
displacement, maximum acceleration, the damping ratio (ζ) change, settling time, and 
%OS change? Put your answers in the table below. 

9) Set K back to its original value of 700,000 N/m. At a decent rate of -600 fpm and 
maximum carrier landing weight, run the simulation again with a damper coefficient of 
75,000 Ns/m (half value) and 300,000 Ns/m (twice value). Print these results. 

As the damper’s value increases, how does maximum displacement, steady state 
displacement, maximum acceleration, the damping ratio (ζ) change, settling time, and 
%OS change? Put your answers in the table below. 

 

Parameter Change as K increases 
(↑, ↓ or↔) 

Change as B increases 
(↑, ↓ or↔) 

Max Gear Displacement  
 

Steady State Gear Displacement  
 

Maximum Acceleration  
 

Damping Ratio (ζ)  
 

Settling Time (Ts)  
 

%OS  
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Running the F/A-18 Simulation: 
I. Ensure the files f18landing.m and f18.mdl are in a directory you have access too 

(desktop, thumb drive, etc.). 

II. Use the browse […] button at the top of the MATLAB command window to set 
the current (working) directory to the location where the files from step I are. 

III. Enter the values for the model parameters into MATLAB 
>> M=19900; B=150000; K=700000; 

IV. Enter a guess for the initial vertical velocity and enter this into MATLAB. Decent 
rates are entered as negative values in feet per minute. 

>> Vo_fpm=-400; 
V. Run the f18landing command. 

>> f18landing 
VI. This command uses the Simulink model to generate plots of landing gear 

deflection vs. time, aircraft vertical velocity vs. time, and aircraft vertical 
acceleration vs. time. The f18landing command uses the variables Vo_fpm, M, B, 
and K to run the simulation. To run a simulation with different parameters, update 
the value of the parameter in MATLAB and rerun f18landing. 

VII. Use the data cursor  to read exact values from the plots. 
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Introduction to Feedback 
The concept of feedback is the central idea behind control systems. Feedback is the 
process by which a system’s output is compared to its input and adjustments are made to 
achieve the desired results. 

System+-
Input OutputSystem++

Input Output

Open Loop Closed Loop

Negative FeedbackPositive Feedback

System
Input Output

 
Figure 1: The relationship between open loop, closed loop, and positive/negative feedback and typical 

block diagrams for each. 

Open Loop Control 
“Open Loop” control is the case where there is NO feedback between the system’s output 
and input. Examples of this include: 

• Walking with one’s eyes shut 
• A single shot of an unguided projectile 
• A microwave oven heating a meal 

Closed Loop Control 
“Closed Loop” control is the case where there IS feedback between the system’s output 
and input. There are two possible ways to apply the feedback signal to the system. The 
feedback signal can be added to or subtracted from the system’s input signal. These are 
referred to as positive or negative feedback. Note the sign difference between the positive 
and negative feedback loops’ block diagrams in Figure 1. 

Because negative feedback systems have a stabilizing effect on the output, they are much 
more common than positive feedback systems. A positive feedback system will drive its 
output to an extreme value. 
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An Automobile’s Cruise Control Example 

The Negative Feedback Case 

System+-
R(s) C(s)E(s)

 
Figure 2: A simple negative feedback loop with the input R(s), error E(s), and output C(s) signals labeled. 

The cruise control in a car is an excellent example of a negative feedback system.  

Write the equation for the error signal E(s) for the negative feedback loop in Figure 2. 
Lesson 1b may be of some help. 

E(s)=
 

If the error signal is positive, the control system opens the throttle more because the 
desired speed, R(s), is greater than actual speed, C(s). If the error signal is negative, the 
control system closes the throttle because desired speed, R(s), is less than actual speed, 
C(s). When the actual speed of the car is equal to the desired speed of the car, the error 
signal is zero and the control system does not change the throttle position. 

If R(s), the desired speed, is set to 55mph and the actual speed of the car, C(s), is 45 mph, 
what is the value for E(s)? How does the cruise control change the throttle position? 

E(s)=
at 45mph

Throttle Position
(circle one) Open More    Close More    Hold Position

 
As the car speeds up to 50 mph what happens to the magnitude of E(s)?  How does the 
cruise control change the throttle position? 

E(s)=
at 50mph

Throttle Position
(circle one) Open More    Close More    Hold Position

 
What is the value of E(s) at 55mph? How does the cruise control change the throttle 
position? 

E(s)=
at 55mph

Throttle Position
(circle one) Open More    Close More    Hold Position

 
The car starts going down a hill and speeds up to 60 mph. What is the current value of 
E(s)? How does the cruise control change the throttle position? 

E(s)=
at 60mph

Throttle Position
(circle one) Open More    Close More    Hold Position

 
Summary: This exercise has demonstrated how a negative feedback system regulates and 
stabilizes a system. 
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The Positive Feedback Case 
Now consider the case where the cruise control was incorrectly wired to be the positive 
feedback system illustrated in Figure 3. 

System++
R(s) C(s)E(s)

 
Figure 3: A simple positive feedback system. 

For the positive feedback system write the equation for E(s). 

E(s)=
 

The incorrectly wired cruise control has been set to 55mph (R(s) = 55), and the current 
speed is 60mph. What is the value of E(s)? How does the cruise control change the 
throttle position (look at the sign of the error signal)? 

E(s)=
at 60mph

Throttle Position
(circle one) Open More    Close More    Hold Position

 
A short time later what has happened to the speed of the car? What has happed to the 
value and magnitude of the error signal? How does the cruise control change the throttle 
position? What limits the speed of the car? 

E(s)=
at 60mph

Throttle Position
(circle one) Open More    Close More    Hold Position

 
What would have happened to the speed of the car, with the incorrectly wired cruise 
control (positive feedback system), if the cruise control had been set to 55mph and the 
initial speed had been 55.1mph?  What if the initial speed had been 50mph? 
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Adjusting the Time Response with Feedback 
A feedback system can also adjust the type of time response a system exhibits. If a 
system takes a long time to reach its steady state value (over damped), a feedback loop 
can drive the system to its final value faster. Making it critically or under damped. 

Consider the following system: 

+-

 
Figure 4: A feedback loop where the error signal is amplified by the gain K. 

K is a variable parameter which can be adjusted to change the time response of the 
system. 

1a) Write the characteristic equation for G(s). 

Char Eqn for G(s)
 

1b) Find the Closed Loop Transfer Function for the system by simplifying the block 
diagram.  

CLTF=

 
 

 

 

 

 

 

1c) Write the characteristic equation for the CLTF. 

Char Eqn for CLTF
 

1d) What is the only difference between the characteristic equations found in questions 
1a and 1c? 

K 25
1)( 2 ++

=
ss

sG
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2a) Complete the following table for the specified values of K using the characteristic 
equation found in question 1c. 

K Roots of 
Char Eqn nϖ  dϖ  ζ  Over, Critical, 

or Under Damped Tp Ts %OS 

0         

1         

4         

4.25         

15         

40         

 

2b) For each of the above values of K, plot the roots of their characteristic equation on 
the complex plane. Label the roots with their K value. 

σ

jω

 
2c) Will the system ever go unstable?  Why or Why not? 
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Introduction to Controllers 
Most feedback mechanisms or circuits will have a controller in them. The controller 
changes the error signal into a control signal. 

A controller uses the error signal to calculate the control signal. 
The control signal is applied as the input to the system to change its output. 

No Controller 

System
(a.k.a. the Plant)+-

Desired Output Actual Output

 
Figure 1: A negative feedback loop with no controller. 

Figure 1 shows a negative feedback loop without a controller. In this case the error signal 
is fed directly into the system. 

1a) In Figure 1, label the error signal. 

 

 

1b) How is the error signal calculated? 

 

1c) The controller converts the error signal into the control signal. The control signal is 
used as the input for the system. Where should the controller be placed in the feedback 
loop? 

Draw a sketch of a feedback loop. Include blocks for the system (plant) and the 
controller. Label the following: desired output, actual output, error signal, and the control 
signal. 
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Proportional Control 
The proportional controller is the simplest controller. In proportional control the control 
signal is the error signal multiplied by a constant value. This value is called the 
proportional gain. 

Proportional gain adjust both the transient and steady state responses of the system. 

Control SignalError Signal KP

 
Figure 2: A proportional controller. The control signal is the error signal 

multiplied by proportional gain, KP. 

2a) Sketch a block diagram of a negative feedback loop with a proportional controller. 
The system’s transfer function is 

csbs
dsG

+⋅+
= 2)( . 

 

 

 

 

 

2b) Find the closed loop transfer function for this system. 

CLTF(s) = 
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2c) In the closed loop transfer function, solve for the following in terms of KP, b, c, and d. 

ωn = ζωn = ζ = 

ωd = DC gain = 

 

 

 

 

 

 

 

 

2d) Indicate how the following time response parameters change as the proportional gain, 
KP, increases. 

Ts Tp %OS DC gain 

 

 

 

 

 

2e) Does the proportional gain, KP, affect the steady state response of the system? Why or 
why not? 

 

 

 

 

2f) Does the proportional gain affect the transient response (peak time, percent overshoot, 
etc.) of the system? Why or why not? 
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Proportional Derivative (PD) Control 
Proportional-derivative (PD) control is achieved by adding a derivative component to a 
proportional controller. 

The derivative component adjusts the transient response of the system. 

Control SignalError Signal KP
+

+

KDs

 
Figure 3: A proportional derivative (PD) controller. The ‘s’ term takes the derivate of the error signal. 

The PD controller takes the derivative of the error signal and multiplies it by the 
Derivative Gain, KD. This derivative term is added to the proportional control signal.  

Recall, in the frequency domain, a single ‘s’ term is the derivative operator. If the error 
signal is changing rapidly then the derivative component will make the control signal 
large. As the system settles to its final value, the error signal changes more slowly. At 
this point the derivative component of the controller does not have much effect on the 
control signal. 

3a) Simplify the block diagram of the proportional derivative controller in Figure 3. 
Label the error signal and the control signal in the answer. 

 

 

 

 

3b) Sketch a block diagram of a negative feedback loop with a proportional derivative 
controller. The system’s transfer function is 

csbs
dsG

+⋅+
= 2)( . 
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3c) Find the closed loop transfer function for this system. 

CLTF(s) = 

 

 

 

 

 

3d) Solve for the following in terms of KD, KP, b, c, and d. 

ωn = ζωn = ζ = 

ωd = DC gain = 

 

 

 

 

 

3e) Indicate how the following time response parameters change as the derivative gain, 
KD, increases. 

Ts Tp %OS DC gain 

 

 

 

3f) Does the derivative gain, KD, affect the steady state response of the system? Why or 
why not? 

 

 

 

3g) Does the derivative gain affect the transient response (peak time, percent overshoot, 
etc.) of the system? Why or why not? 
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Proportional Integral (PI) Control 
Proportional Integral (PI) control is achieved by adding an integral term to a proportional 
controller. 

The integral component adjusts the steady state response of the system and 
eliminates steady state error. 

Control SignalError Signal KP
+

+

KIs
1

 
Figure 4: A proportional integral (PI) controller. The ‘1/s’ term takes the integral of the error signal. 

While the derivative term only affects the transient responses of the system, the integral 
term only affects the steady state response. 

4a) Simplify the block diagram of the proportional integral controller in Figure 4. Label 
the error signal and the control signal in the answer. 

 

 

 

4b) Sketch a block diagram of a negative feedback loop with a proportional integral 
controller. The system’s transfer function is 

csbs
dsG

+⋅+
= 2)( . 
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4c) Find the closed loop transfer function for this system. Do not have any ‘1/s’ terms in 
your answer. 

CLTF(s) = 

 

 

 

 

 

4d) Using the techniques we have learned in this course, we cannot solve for the time 
response of this transfer function. Why not? 

 

 

The integral term is used to drive the steady state error of the system to zero. 

To understand this, assume there is a steady state error of some value E. For example, the 
cruise control of the car is set to 55 mph and the car is climbing a hill at 50 mph. 

The integral term will take the integral of the constant error signal and multiply it by KI. 

KI1/s ∫= EdtKI

Control
Signal

time

Error
Signal

time

 

4e) Solve the integral ∫ EdtK I  where E is a constant value for integral component of the 
control signal and graph it. 

Integral Control Signal =  

4f) If the steady state error, E, is a large value how does the control signal change? If the 
steady state error is zero, how does the control signal change? 

 

 

4g) How does increasing KI change the control signal? Explain using the graph in 4e. 
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Proportional Integral Derivative (PID) Control 
Proportional Integral Derivative (PID) control is one of the most common forms of 
control. This controller has all three components discussed previously. This allows the 
transient responses to be adjusted independently from the steady state response, and the 
steady state response to be adjusted independently from the transient response. 

Control SignalError Signal KP
+

+

KDs

KI

+

s
1

 
Figure 5: A proportional integral derivate (PID) controller. 

5a) Simplify the block diagram of the proportional integral derivative controller in Figure 
5. Label the error signal and the control signal in the answer. 

 

 

5b) Sketch a block diagram of a negative feedback loop with a PID controller. The 
system’s transfer function is 

csbs
dsG

+⋅+
= 2)( . 

 

 

 

 

5c) Find the closed loop transfer function for this system. Do not have any ‘1/s’ terms in 
your answer 

CLTF(s) = 
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Modeling a Gun Turret with Feedback 
Build a SIMULINK model to check the results of question 2 in the pre-lab exercise.  
Build the open loop system model in SIMULINK by doing the following:  

Building the Model 
Step 1: Open MATLAB. 

Step 2: Type ‘simulink’ and hit enter. 

Step 3: Click on the Simulink Library Browser window and then type Ctrl+N to open a new 
simulation window. 

Step 4: Next find the menu in the bottom left side of the Simulink Library Browser window. 

Step 5: Click on the “Simulink” menu on the left side of the browser, select the “Sources” 
submenu, select a “Step” block from the right side menu; click and drag it to the blank 
Simulink project window. 

Step 6: Click the “Math Operations” submenu in the Library window, and find the ‘sum’ block; 
drag it to the project window. Double click on it and change the list of signs to “|+ -“ .  
Click OK. 

Step 7: Go to the “Math Operations” submenu and find the Gain block. Click and drag this block 
to the simulation model window. 

Step 8: Next look under “Continuous” submenu in the Library Browser window and find the 
‘Transfer Fcn’ block; drag it to the project window. 

Step 9: Now look under the “Sinks” submenu in the Library Browser window and find the 
‘Scope’ block;  drag it to the project window. 

Step 10: Align the blocks from left to right in the order shown in Figure 1. 

Step 11: Click on the small triangle on the right of the Step block then drag out a line to the “+” 
input on left side of the summing block. Repeat this for the Summing block, the gain 
block, the transfer function, and the scope.  Now, all the blocks should be connected in a 
line….it should look like this:  

1

s+1
Transfer FcnStep Scope

1

Gain

 
Figure 1: The SIMULINK model of the open loop system. 

Step 12: Double click on the ‘Transfer Fcn’ block.  Enter the coefficients of the transfer 
function from question 2 of the pre-lab exercise in the numerator and denominator 
lines in the form of [b c d] where bs2+cs+d.   Ensure spaces are placed between each 
coefficient value.  Click OK. 

Step 13: Double click on the Step block. Enter the value of 0 for ‘Step Time’. Click OK. Double 
click on the gain block and enter a value of 6 for the gain (since f(t)=6u(t)). Click OK. 

Step 14: Hit Ctrl+E. This will bring up a Simulation Parameters box. In the ‘Stop Time’ block, 
set this value to 20.0.  Adjust the Relative Tolerance to 1e-6. Click OK. 

Step 15: Finally, click on the play button  or press Ctrl+T to run the simulation. 

Step 16: Double click on the scope block to view the step response plot. 
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Labeling, Saving, and Printing Steps: 
Step 1: Double click on the scope in the simulation window. 

Step 2: Click the ‘Autoscale’ icon (i.e. binoculars) in the header of the “Scope” screen.  

Step 3:  Right click on the scope plot in the “Scope” screen and bring up the ‘Axes properties’ 
menu.  Enter 0 for Ymin and 2.5 for Ymax.  For the title, enter ‘(YOUR NAMES)—
MASS SPRING DAMPER—(THE DATE)’. 

Step 4: Save (to your own memory device, i.e. disk) and PRINT both the plot and the 
simulation model (i.e. block diagram). 

 If printed plot is unreadable (i.e. too light), go to the “general” settings in the 
preferences window (“File” menu of the SIMULINK window → “Preferences…”). Set 
“Figure Window Printing” to “Always send as black and white.” 

Step 5: NEATLY, mark/label (using straight lines) by hand, using a pencil: 
tp = your value, ts = your value,  %OS = your value,  
and the steady-state output Xss = your value…on the plot.  Also, label the X-axis as 
“TIME (sec)” and the Y-axis as “x(t) DISPLACEMENT in meters.” 

Does the graphed response match the pre lab calculations? 

A More Realistic Gun Turret Model 
Now consider some realistic weapon systems.  Many weapon systems such as gun turrets 
or rotating antennas are rotating mass-damper systems: they rotate and naturally have 
mass and friction.  Although these are rotating systems, vice translating systems like the 
above mass-spring-damper, they are modeled similarly (but use different variables). But 
they do not have springs countering the rotation. 

B

J

τ(t)

θ(t)

 

(a) (b) (c)  
Figure 2:  A simple representation of the gun turret (a), an actual gun turret (b), and an antenna mount (c). 

1) Write the transfer function for a rotational mass spring damper. Hint: See Lesson 3b. 

G(s)= 
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For this simulation use the following parameters: J=2000N-1-m-1-s-2   B= 1000 N-s    
τ(t)= 2000u(t) N-m (a step input). The gun turret has no spring. 

2) Write the turret’s transfer function, substituting in the simulation parameters. 

G(s)=

 
3) If you attempt to calculate θss, the steady state position of the gun turret, in response to 
a step input of torque, you get an unusual solution.   Calculate it here: 

θss=
 
 

4) Use your intuition to explain why this happens. If you apply a constant torque to a 
rotational mass with drag, will it stop at some particular position? Will it stop at all? Why 
is this different than a mass-spring-damper system? 

 

 

 

Using SIMULINK to Investigate the Model 
5) Simulate the step response of this open-loop system using the model developed in 
question 2. 

Step 1: Double click on the ‘Transfer Fcn’ block.  Enter the coefficients of the transfer function 
from question 2 into the numerator and denominator in the form of [b c d] where 
bs2+cs+d.   Ensure spaces are placed between each coefficient value.  Click OK. 

Step 2: Double click on the gain block and enter 2000 [since τ(t)=2000u(t)]. Click OK. Click and 
drag on the gain block to make it larger. This will allow you to see the gain value. 

Step 3: Finally, click on the play button  or press Ctrl+T to run the simulation. 

Plot the result as follows: 
Step 1: Double click on the scope in the simulation window. 

Step 2: Click the ‘Autoscale’ icon (i.e. binoculars) in the header of the “Scope”  screen.  

Step 3:  Right click on the scope plot in the “Scope” screen and bring up the ‘Axes properties’ 
menu. For the title, enter ‘(YOUR NAMES)—Gun Turret Step Response Without 
Feedback—(THE DATE)’. 

Step 4: Print both the plot and the simulation model (i.e. block diagram). 
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As seen above, the open-loop gun turret system is very difficult to control and aim 
steadily at a particular point, making it ineffective as a weapon system. This can be 
corrected by adding feedback.  The closed loop transfer function obtained by using 
feedback will behave like a mass spring damper. The proper selection of the set point, 
proportional, and derivative gains (three adjustable parameters: Ksp, KP, and KD) will 
allow you to specify and meet the performance criteria for the system.   The criteria are: 

- θss: To be an effective weapon system, the gun must train to the desired 
position and settle there. 

- Settling Time: To be effective, it must get there expeditiously, consider the 
significance for CIWS. 

- %OS: A wildly oscillating gun turret is going to be less accurate. 

Now, we will modify the gun turret model to achieve the following system response 
specifications: 

θss= 1.0 radian        ts < 1 sec      %OS < 10%     
6a) What is the CLTF for the system illustrated in Figure 3a? Hint: The answer to 
question 3 in the pre-lab exercise is a good starting point. 

(a)

(b)

G(s)++ Km+- KP

KD

Ksp

s

1/2000

s  +1/2s2

Transfer FcnStep

5

Set Point Gain
Ksp

Scope

5

Proportional Gain Kp

2000

Motor Gain (Km)

5

Derivative
Gain Kd

du/dt

Derivative

 
Figure 3: The system block diagram (a) and the SIMULINK model (b). 

CLTF= 

 

6b) Use the closed loop transfer function to explain which of the three gains (Ksp, KP, or 
KD) is the only gain that will affect the system’s steady state value. This is the gain you 
should change to set the gun’s final position. Why don’t the other two gains affect the 
gun’s final position?
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7) Now we are going to use SIMULINK to iteratively find the controller gain values (Ksp, 
KP, and KD) which will meet the above requirements. Pick a value for each feedback 
constant, and adjust them until the above performance requirements are met. Write the 
final values in the spaces below. Do NOT get your values from other lab groups.  

Using SIMULINK, model the system.  Your block diagram should include the original 
blocks the pre-lab model, and will look like the diagram in Figure 3b after the 
following steps 1 to 12 below. Your values for the forward path gain, feedback gains and 
the transfer function should have been inserted. To see the values in the boxes, expand 
the boxes horizontally by clicking and dragging a box corner. 

Step 1:  Label the gain block to the left of the transfer function block ‘Motor Gain (Km)’. 

Step 2: Click, then delete,  the line from the sum block to the motor gain block . 

Step 3: Click on the Library Browser window. 

Step 4: Go to the “Math Operations” submenu and find the Gain block. Click and drag this block 
to the simulation model window three (3) times. Alternatively, you can use the copy and 
paste commands to duplicate the gain block. 

Step 5: Go to the “Math Operations” submenu and find the Sum block. Click and drag this block 
to the simulation model window. Double click on the sum block and set the list of signs 
to ‘++|’. Move the this sum block to the left of the motor gain block. 

Step 6: Click on the “Continuous” submenu in the Library Browser window and click on the 
Derivative. Drag one of these blocks to the simulation window. 

Step 7: Place two gain blocks between the sum blocks, one below the other.  

Step 8:  Place the derivative block to the left of the upper Gain block. 

Step 9: Place the last Gain block between the Step block and first Summing junction. 

Step 10: Connect the blocks as illustrated in Figure 3b. 

Step 11:  Double click on the Gain blocks and enter your estimated values.   

Left click on the three gain title blocks and properly rename them as “Set Point Gain Ksp”, 
“Proportional Gain Kp”, and “Derivative Gain Kd” as appropriate.   

Step 12: Adjust your ‘Simulation Parameters’ using Ctrl+E:   

Stop Time = 3 seconds, Relative Tolerance = 1e-6. 
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Run the simulation and verify your system meets the specs.  It should, very closely.  If 
not, recheck your math, correct errors, and try again.  Once it meets the specs, print the 
results: 

Step 1: Double click on the scope in the simulation window. 

Step 2: Click the ‘Autoscale’ icon (i.e. binoculars) ) in the header of the “Scope” screen.  

Step 3:  Right click on the scope plot in the “Scope” screen and bring up the ‘Axes properties’ 
menu.  For the title, enter ‘(YOUR NAME)—System Response With Feedback—(THE 
DATE)’.  Click OK> 

Step 4: PRINT both the plot and the simulation model (i.e. block diagram). Your name 
should be typed on the block diagram print out. 

Step 5: NEATLY, mark/label (using straight lines) by hand using a pencil: 

tp = your value, ts = your value,  %PO = your value, and the steady-state output θss = your 
value…on the plot.  Also, label the X-axis as “TIME (sec)” and the Y-axis as “θ(t)  in 
radians.” 

Ksp=

Set Point Gain

KP=

Proportional Gain

KD=

Derivative Gain  
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Feedback Malfunctions 
Now investigate (printed plots not required) the effects of some malfunctions of the 
control system.  You should sketch a plot of the response as part of your answer. First 
use Ctrl-E to set stop time to 10 seconds, then simulate. 

8) What happens if derivative control lost? Set KD to zero, and run the simulation. 

 

 

 

 

9) What happens if proportional control is lost? Restore your original value of KD, set KP 
to zero, and run the simulation. 

 

 

 

 

10) What happens if proportional control is reduced by 90%? Set the proportional gain to 
10% of your original value and run the simulation. 

 

 

 

 

 

11) What happens if the set point gain is reduced by 50%? Restore KP to your original 
value, set Ksp to half your original value, and run the simulation. 

 

 

 

 

12) What happens if the feedback signal is lost? Restore Ksp to your original value, 
delete the feedback line, and run the simulation. 

 

 

 

For this assignment to be complete you must include the printouts of the 3 block 
diagrams, and three output plots. 
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Correcting for Disturbances 
Control systems are designed to achieve a specific output even when the system is in the 
presence of disturbances. Stabilizing a gun barrel on a moving platform is a classic 
example of this situation. As the vehicle pitches and rolls, the control system should be 
able to hold the barrel at a constant elevation. 

(a) (b)

θb

θp

θt

(c)  
Figure 1: The Mark 45 5 inch gun (a) and M1A2 Main Battle Tank (b) both have stabilized gun barrels. 

The relationship between barrel elevation, platform roll, and total elevation angles (c). 

Conceptually, all gun barrel elevation systems are very similar. The desired barrel 
elevation is an input to the controller1. The controller generates a control signal to drive 
the actuator. Usually, the actuator is either a hydraulic or electric motor. The actuator 
applies a torque to change the barrel’s elevation. Figure 2 depicts this process. 

ActuatorControl
System Gun Barrel

Desired Barrel
Elevation

Control Signal to
Actuator

Actuator Applies Torque to
Rotate Barrel in Elevation

Barrel Elevation

 
Figure 2: The major components of the barrel elevation system. 

The model in Figure 2 does not account for the platform rolling or pitching. Any platform 
roll or pitch will be added to or subtracted from the barrel’s elevation, see Figure 1c. 

ActuatorControl
System Gun Barrel

Desired Barrel
Elevation

Barrel Elevation
(wrt platform)

Platform
Roll or Pitch

Total Barrel
Elevation

+
+θb θt

θp

 
Figure 3: A model of the barrel elevation system with platform roll/pitch affecting the output. 

1a) Do the models in Figures 2 and 3 depict an open loop or closed loop control system? 

Open Loop      Closed Loop
 

                                                 
1 The desired input could be entered manually or come from a targeting computer. 
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The system needs feedback to counter the effects of the platform’s roll and pitch. 

1b) Sketch the system illustrated in Figure 3 with a feedback path and elevation error as 
an input to the controller. Which signal did you select to feedback? Why? 

 

 

 

 

The Gun Barrel’s Transfer Function 
Each of the blocks in Figures 2 and 3 represent a model of a system component. 

2a) The gun barrel can be represented by a second order mechanical rotational system. 
Write a transfer function which relates barrel angle to applied torque. 
Hint: See Lesson 3b. 

G(s)=
 

2b) Use the following values for this simulation: J = 200, B=100. There is no spring in 
the barrel. Write the gun barrel’s transfer function, substituting in the simulation 
parameters. 

G(s)=
 

The Actuator Model 
The simplest model of the actuator is one where the amount of torque generated is 
proportional to the control signal. 

Km Output TorqueControl Signal

 
Figure 4: A very simple actuator model in which the torque generated by the actuator 

is proportional to the control signal. Km is the motor gain. 

3a) If the motor gain (Km) has a value of 200, complete the table below. 
Control Signal 

Value 
Actuator Output 

Torque 
Control 

Signal Value 
Actuator 

Output Torque 
50  0  

-5  100  

3b) Does this actuator model impose any limits on the torque generated by the motor? 
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The Complete SIMULINK Model 

control
signal torque

error
signal

Total Elev (deg)Step

1

Proportional Gain Kp

Platform Roll (Deg) Platform Roll

200

Motor Gain Km

Elev Error (deg)

10

Cmd Elev (deg)

1

s+1

Barrel TF

Applied Torque

 
Figure 5: The SIMULINK model of the gun barrel elevation 

control system with a proportional controller. 

Figure 5 illustrates the SIMULINK model for the gun barrel elevation control system. 
This model is available in the file gun_barrel_elev.mdl. Ensure this file is in your 
MATLAB working directory. A detailed discussion of the model follows. 

The “Step” and “Commanded Elevation” blocks provide an input to the control system. 
Initially the gun barrel is at an elevation of zero degrees. At the start of the simulation 
(time = 0) the commanded elevation for the gun is changed to the value in the “Cmd 
Elev” block. 

3c) In Figure 6 label the controller and the actuator. What kind of controller is shown in 
Figure 6? 

 

 

The “Barrel TF” block is the transfer function for the gun barrel. This transfer function 
has torque as an input and barrel elevation angle as its output. 

Any platform roll is added to the barrel elevation to calculate the total barrel elevation. 
The total barrel elevation is used as the feedback signal. 

Preparing the Model for Use 
1. Enter the transfer function you found for the gun barrel (question 2b) in the 

model’s barrel transfer function block. 

2. Verify the parameters for the step block are: Step Time = 0, Initial Value = 0, 
Final Value = 1. 

3. Verify the “Cmd Elev” block has a value of 10. 

4. Verify the following gain values are used: Kp = 100, Km = 200. 

5. Verify the simulation stop time is set to 20 seconds in the “Configuration 
Parameters…” window (in the “Simulation” menu). 

6. Verify the Amplitude of the platform roll is set to 0. Double click on the platform 
roll block. 
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Testing the Model with No Platform Roll 
4a) Make a sketch of the complete model. You do not need to include the “scope”, 
“step”, or “Cmd Elev” blocks in your sketch. 

 

 

 

 

 

 

 

 

 

 

 

4b) Assuming there is NO platform roll, find the closed loop transfer function for the 
system sketched in question 4a. No platform roll means the platform roll block and its 
summing junction can be ignored when finding the CLTF. Additionally, do not include 
the step input block or “commanded elevation” block. 

CLTF(s)=

 
  

 

 

 

4c) Solve for the following, using the closed loop transfer function found in question 4b. 

Response Type Ts %OS  
 

 

 

4d) Calculate the steady state gun barrel elevation for a command elevation of 10 degrees 
applied as a step input. Hint: Use the final value theorem. 

θss  
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4e) Verify your answers to questions 4c and 4d with the SIMULINK model. Run the 
model by clicking the  button in the model window. Display the plots of Elevation 
Error, Applied Torque, and Barrel Elevation by double clicking on the scope blocks in 
the model. You may need to click the  button in the plot windows to set the axis 
limits properly. Estimate the following values from the plots. 

Response Type Ts %OS  
 

4f) Did the simulation match your calculations? Does this seem like good performance 
for a gun barrel with NO platform motion? 

 

A Better Controller (proportional derivative) 
To improve the response of the gun barrel replace the proportional controller with a 
proportional derivative controller. Hint: See Lesson 6b. 

5a) Make a sketch of the complete model with PD control. You do not need to include the 
the “scope”, “step”, or “Cmd Elev” blocks in your sketch. 

 

 

 

 

 

5b) Assuming there is NO platform roll, find the closed loop transfer function for the 
system sketched in question 5a. No platform roll means the platform roll block and its 
summing junction can be ignored when finding the CLTF. Additionally, do not include 
the step input block or “commanded elevation” block. Leave KP and KD as variables. 

CLTF(s)=

 
  

 

 

5c) Using the closed loop transfer function found in question 5b and KP = 100 and KD = 
10, solve for the following: 

Response Type Ts %OS  
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5d) Calculate the steady state gun barrel elevation for a command elevation of 10 degrees 
applied as a step input. Hint: Use the final value theorem. 

θss  
 5e) Run the simulation again with the PD controller. There should be a large 
improvement in the system’s response. Print the Total Elevation plot for your notes. 
Estimate the following from the plot. 

Response Type Ts %OS  
5f) Do these results match the results calculated in questions 5c and 5d? Has the 
performance of the gun barrel improved? 

 

5g) Sketch the plot of Applied Torque for this response below. What is the maximum 
torque applied to the gun barrel? Why did the simulation predict such a large initial 
torque value? 

Maximum Applied Torque  

A Better Actuator Model 
Real actuators have an upper limit on how much torque they can apply. It does not matter 
how big the control signal is, the motor just can’t push any harder. Add this feature to the 
model with a saturation block. The saturation block is found in the SIMULINK Library 
Browser in the “Commonly Used Blocks” or “Discontinuities” menu. Place the saturation 
block after the motor gain block as illustrated in Figure 6. Double click on the saturation 
block and set the upper and lower limit to 3000 and -3000 respectively. 

Control
Signal

Saturation

200

Motor Gain Km

Torque

 
Figure 6: An improved actuator model which limits the torque to a maximum value. 

6a) Run the simulation again. View the Applied Torque plot. Change the Y axis limits to 

±4000 by right clicking on the Y axis. Use the  button to zoom in on the first 6 
seconds of the simulation. Print and label this plot. Describe what is happening to the 
applied torque below. 

 

 

6b) How did settling time change? Why? 
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Testing the Model with Platform Roll 
Initially apply a roll of ±10 degrees and a period of 8 seconds to the platform. Double 
click on the platform roll block and set the amplitude to 10 and set the frequency to 4

π . 

4
π  may be entered as “pi/4”. 

Table 1 lists several periods and their corresponding frequencies in radians per second. 

 

 

 

 

 

 

 
Table 1: Periods and Frequencies in radians per second 

7a) Run the simulation again. How much elevation error does the ±10 degree roll 
introduce? What is the maximum torque applied by the actuator? How much torque is 
applied to cancel out the platform roll? Use the  button to magnify the Y axis to 
accurately read the error and torque values. 

Roll Induced
Elevation Error

Maximum
Applied Torque

Torque Required to
Correct for Platform Roll  

 

 

 

7b) Run the simulation again with a 4 second period, ±10 degree roll, and simulation stop 
time of 60 seconds. Sketch a plot of the applied torque below. What is the roll induced 
error? What has gone wrong? 

Roll Induced
Elevation Error  

Period [sec] Frequency [rad/sec] 
2 π  

4 2
π  

6 3
π  

8 4
π  

10 5
π  
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7c) Set KP = 100 and KD = 10. Set the maximum torque of the motor to 9,000 Nm, by 
changing the upper and lower limits for the saturation block. Re-run the simulation. How 
does this improve the response, and why? 

 

 

 

 

 

 

7d) Based on the results of this lab, what are two methods of improving a system’s ability 
to compensate for disturbances? Why? 
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Lesson 9: PID Controllers 

The Generator Set Model 
The goal of this lesson is to control the frequency output of an AC generator set as the 
electrical load placed on the generator changes.1 

Figure 1: A Caterpillar diesel generator set and a General Electric LM2500 gas turbine generator set. 

1a) What determines the output frequency of an AC generator? 

 

1b) What determines the required torque of an AC generator? 

 

1c) As the loading of the generator increases, how does the required torque to rotate the 
generator change? What happens to the generator’s speed? 

 

In this simplified model, the generator is rotated by an engine which is controlled by a 
controller. 

Controller Engine Generator

Control SignalError Signal Torque Generator Speed (RPM)Desired Speed (RPM)

-
+

 
Figure 2: The conceptual diagram of the model to control generator speed. 

The engine is modeled as a 1st order system with the transfer function 

1
100)(
+

=
s

sGE . 

                                                 
1 The term “generator set” refers to the whole machine (i.e. controller, engine, and generator). The term 
“generator” refers to just the device which converts rotational motion to electricity. 
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The electrical generator is modeled as a 1st order rotational mechanical system with the 
transfer function 

J
B

J
G s

sG
+

=
1

)(  

where J is the rotational inertia of the generator and B is the friction coefficient for the 
generator. The generator’s transfer function has torque as its input and rotational speed as 
its output. The output frequency of the generator is determined by its rotational speed. 
The control system should maintain the required generator speed, and thereby output 
frequency, under a wide range of loading conditions. 

As a larger electrical load is placed on the generator, more torque is required to keep the 
generator spinning at the same speed. This is analogous to adding more friction into the 
system. In a mechanical rotational system the relationship for friction is 

ϖτ B=  

where ω is rotational speed, B the frictional coefficient, and τ  is torque. Adding more 
friction to the system increases the magnitude of B. In this model there are two sources of 
friction in the generator. The internal friction of the generator, GB , and the “friction” 
created by the electrical load on the generator, LB . Specifying both of the frictional terms 
in the generator’s transfer function yields 

J
BB

J
G LGs

sG ++
=

1

)( . 

The block diagram for this transfer function is drawn with the frictional terms as separate 
blocks. This makes it easier for the simulation to vary the friction due to electrical 
loading, LB . 

-
+

BG

BL

+

+

S
1

J
1

 
Figure 3: The block diagram of the generator transfer function. 

2) Simplify the block diagram in Figure 3 to show that it is equivalent to )(sGG  listed 
above. Show the intermediate diagrams. 

G(s)=
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The Open Loop Model of the Generator Set 
Imagine there is no feedback and no controller in the generator set. The throttle on the 
engine is set to 1800 RPM and never changed. 

3a) What will happen to generator speed as loading is increased? Why? 

 

 

3b) Sketch an open loop block diagram with the appropriate transfer functions for the 
engine and generator. J = 1000 and BG = 100. Leave BL as a variable. 

 

 

 

 

 

 

3c) Simplify the block diagram and write the resulting transfer function.  

 

 

 

 

 

3d) Using the final value theorem, calculate the final values for the open loop system. 
The input is a step input of 1800 RPM. What happens to generator speed as loading is 
increased? Why? 

BL Final Value 

0  

10  

100  

1,000  

100,000  

3e) Do the results in question 3d match your prediction in question 3a? How effective is 
open loop control in this application? 
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Proportional Control 
4a) Sketch a proportional controller. Label the error signal and control signal. Hint: See 
Lesson 6b. 

 

 

4b) How is the error signal for the controller generated? 

 

4c) How is the control signal generated? Hint: See Lesson 6b. 

 

 

4d) Sketch a block diagram of the complete generator set model with a proportional 
controller and the transfer functions for the engine and generator. Use the generator 
transfer function model from Figure 3. J = 1000 and BG = 100. Leave BL as a variable. 

 

 

 

 

 

 

4e) Simplify the block diagram in question 4d to find the closed loop transfer function for 
the system. Hint: Use the solution found in question 2 of the pre-lab with KD set to zero. 
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4f) From your answer in 4e, calculate the proportional gain (KP) required to keep the 
generator speed at full load (BL=100,000) within 5% of its initial value. This means the 
DC gain of the closed loop transfer function found in 4c should be at least 0.95. 

Kp=
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The SIMULINK Model of the Generator Set 

Generator TF

0

Steady State RPM
Speed Error (RPM)

SpeedTorque

Load Friction

1
s

Integrator Generator Speed (RPM)

100

s+1
Engine TF

1800

Desired RPM

Error Signal Control Signal

Controller

100

BG

0.001

1/J

 
Figure 4: The SIMULINK mode of the generator set. 

Figure 4 depicts the SIMULINK model of the generator set. The generator’s transfer 
function is modeled as described in Figure 3. This allows the internal friction, GB , and 
the load friction, LB , to be modeled separately. The controller and load friction are both 
implemented as subsystems in SIMULINK. 

The Load Friction Subsystem 
The load friction subsystem models the equation 

ϖτ LB= . 

The subsystem hides modeling required to allow the simulation to vary the load with 
time. This simplifies the overall view of the model. Double clicking the load friction 
subsystem displays its contents. 

The value for loading
should be from 0 to 1.

BL is the fiction coefficient
at maximum loading

1
TorqueProduct

Loading Plot

Loading

100000

BL

1
Speed

 
Figure 5: The load friction subsystem. This subsystem allows the simulation to 

vary the load friction with time. 

The value for LB  is the frictional coefficient at maximum loading. For this simulation LB  
has a value of 100,000. This is a thousand times larger than the generator’s internal 
friction of 100. At full load the generator will be 1000 times more difficult to turn. When 
the “Loading” step function has a value of 0, no load is applied to the system. Maximum 
load is applied to the system when the step function has a value of 1. 
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Preparing the Model for Use 
1. Download the model file generator.mdl to your work area and open it in 

SIMULINK. 

2. Set Simulation Stop Time to 20 seconds (Set in the Simulation Menu → 
Configuration Parameters…). 

3. Set the following values: Desired RPM = 1800, BG=100, 1/J= 0.001 

4. In the “Load Friction” subsystem: 

a. BL=100,000 

b. Loading Step Input: Initial Value = 0, Final Value = 1, Step Time = 10 

Testing the Proportional Controller 
4g) Verify the answer to question 4d with the SIMULINK model of the generator. After 
setting the model up for use, implement a proportional controller in the “Controller” 
subsystem. Use the gain value calculated in question 4f. Print the “Generator Speed” 
plot for your notes. 

• Label it as “Generator No Load Step Response”. 

• Annotate your Kp value on the plot. 

• Annotate the point on the plot where full load is applied. 

• What is the steady state generator speed at the end of the simulation? Is this 
within 5% of the desired RPM of 1800? 

Final RPM= Kp=
 

4h) Initially the generator set is shutdown (0 RPM). At time zero the generator set gets 
started and the controller immediately tries to regulate generator speed to 1800 RPM. 
How good is the transient response between 0 and 10 seconds? What is the response 
type? 

 

 

4i) After full loading is applied, at 10 seconds, the generator’s output is much smoother 
than it was for the first 10 seconds of the simulation. Why? 

 

 

 

4j) Try to improve the transient response by lowering the gain KP in the controller.  Does 
this improve the transient response? As KP is lowered, what happens to the steady state 
response (the final generator speed) at full load? 
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Proportional-Derivative (PD) Control 
5a) Sketch a proportional derivative controller. Label the error signal and control signal. 

 

 

 

 

5b) Write an expression for the control signal in terms of the error signal? 

 

 

5c) Sketch a block diagram of the complete generator set model with a proportional-
derivative controller and the transfer functions for the engine and generator. Use the 
generator transfer function model from Figure 3. J = 1000 and BG = 100. Leave BL as a 
variable. 

 

 

 

 

 

 

5d) Simplify the block diagram in question 5c to find the closed loop transfer function for 
the system. Hint: Use the answer to question 2 of the pre-lab exercise. 
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5e) Implement a proportional derivative controller in the SIMULINK model. Adjust the 
gain terms KP and KD to improve the generator set’s response (both at startup and under 
load). Most real systems have gain values less than 1000. Ensure both the proportional 
and derivative gains are less than 1000. Record the gain values and steady state speed. 
Print the “Generator Speed” plot for your notes. The “Generator Speed” plot should 
be scaled to show the whole response. 

Final RPM= KP= KD=
 

 

5f) Use the final value theorem to calculate the steady state generator speed under 
full load. Verify this result with the simulation.  

Final RPM=
 

 

 

 

5g) As the proportional gain is lowered, how does the steady state generator speed 
change? As the derivative gain is lowered, how does the steady state generator speed 
change? How does the transient response change as each gain is lowered? 

 

 Affect on Steady State Response. Affect on Transient Response. 

KP↓ 

 

 

 

 

 

KD↓ 
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Proportional-Integral-Derivative (PID) Control 
 The previous section demonstrated that adding a derivative component to a controller 
allows the transient response to be adjusted independently from the steady state response. 
However, a PD controller cannot adjust the steady state response without also affecting 
the system’s transient response. 

Adding an integral term to the controller will allow the controller to adjust the steady 
state response of the system independently of the transient response. 

How Integration Removes Steady State Error 

Controller

Output C(s)Error Signal E(s)Input R(s)

-
+ Engine Generator

 

Figure 6: A simple negative feedback system with the input, output and error signals labeled. 

6a) Write the equation for the error signal, E(s), in terms of the input, R(s), and the 
output, C(s), for the simple negative feedback system depicted above. 

 

 

6b) If the output signal, C(s), equals the input signal, R(s), what is the value for the error 
signal, E(s)? In the generator example, this corresponds to the steady state speed equaling 
the desired speed. 
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If there is a constant error in the system’s output, i.e. the generator’s steady state speed 
does not equal the desired speed, a plot of the error signal would be similar to Figure 7. 

Time

Error Signal

 

Figure 7: A plot of a constant error signal. 

6c) Solve ∫ EdtK I , where E is a constant value of the error signal and KI is the integral 
gain. Plot this integral on the axes below? How does the value of KI and the magnitude of 
E change the shape of the graph? 

Time

∫ EdtKI

 
 

6d) Sketch the integral of the following error signal on the axes below. 

Time

Error Signal

Time

∫ Edt

0

0
 

The previous questions demonstrate that when the error signal is not zero the integral 
term will be changing. The integral term of the PID controller will keep adjusting the 
control signal until the error signal becomes zero. 
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An Alternate Integral Term Explanation 
At steady state all signals in the system are constant and unchanging, including the output 
of the controller’s integral term. Therefore, the input to the controller must be zero, 
because only a zero input will cause an integral to not change. Since the input to the 
controller is the error signal, the error signal must be zero at steady state. 

PID Control of the Generator 

Control SignalError Signal KP
+

+

KDs

KI

+

s
1

 

Figure 8: A PID controller. The ‘1/s’ term takes the integral of the error signal 

7a) Sketch a block diagram of the complete generator set model with a proportional-
integral-derivative controller and the transfer functions for the engine and generator. 
Use the generator transfer function model from Figure 3. J = 1000 and BG = 100. Leave 
BL as a variable. 
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7b) Implement a proportional-integral-derivative controller in the SIMULINK model. 
Adjust the gain terms KP, KD, and KI to improve the generator set’s response (both at 
startup and under load). Record the gain values and steady state speed. Print the  
“Generator Speed” plot for your notes. The “Generator Speed” plot should be scaled to 
show the whole response. 

Annotate the plot with: 
• The point when full load is applied. 
• The steady state generator speed under full load. 
• The settling time of the load transient. 

KP= KD= KI=
 

Final RPM=
 

7c) Now vary the value of the integral gain and describe how the response changes. Set 
the following: Simulation stop time = 30 seconds, KP = 500, and KD = 600. How does 
increasing the integral gain affect the system’s response? 

KI value Settling Time for Full Load Transient 

0  

100  

200  

500  

1000  

 

7d) Increase the integral gain term to a very large value (greater than 50,000). Set the 
simulation stop time to 15 seconds. Run the simulation. Print the “Generator Speed” 
plot for your notes. What kind of response is occurring in the first 10 seconds? What is 
the maximum RPM reached by the generator? Use the answer to question 6c to explain 
why this happens for large values of KI. 

Response: 
(0 to 10 sec) Maximum RPM: 
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Lesson 10: PID Control and Discrete Sampling 

Part I: PID Control of the Cruise Missile’s Speed 

 

 

Figure 1: The Tomahawk Land Attack Missile (TLAM), upper left. A Chinese YJ86LG, lower left. An 
Exocet impacting a target, right. 

This lesson continues the exploration of a PID controller. For maximum strike 
effectiveness, a cruise missile’s “time on target” should be as close to the programmed 
value as possible. The PID controller will regulate the speed of a cruise missile to try to 
achieve the correct time on target. Typical parameters for a Tomahawk Land Attack 
Missile (TLAM) are listed in Table 1. 

Simulation TLAM Parameters 
Maximum Speed 880 km/hr 
Minimum Speed 400 km/hr 
Maximum Range 1100 km 

Table 1: TLAM Parameters 

The mission profile can be graphed on a plot of distance vs. time. Initially (t=0) the 
missile is at the launch platform (d=0). 

1a) What is the average speed required to reach a target 1000 km away in exactly 2 
hours? Plot this mission profile on the axes below. How is speed depicted on this plot? 

Time [hrs]
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m
]

Ave Speed =
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A simple model of the TLAM’s speed control is illustrated in Figure 2. The input to this 
model is the missile’s commanded position (distance from launch site) as a function of 
time. The cruise missile’s transfer function describes the missile’s ability to speed up and 
slow down. The system monitors actual cruise missile position (again distance from the 
launch point) and compares it with commanded position to generate the error signal. 

-
+ Controller

s
1

1
1
+s

Cruise Missile
Transfer Function

Integrator

X
Actual Position

(Distance)
Commanded Position

(Distance)

 
Figure 2: The block diagram for the cruise missile’s speed control system. 

1b) Label the error signal and the control signal on the above block diagram. 

1c) What signal is represented by the “x” in the above block diagram? Hint: The integral 
of “x” is the cruise missile’s position. 

 

1d) If the missile arrives at its target on time, what is the value of the error signal? 

Error Signal =  

Preparing the Model for Use 
Download and open the file cruise_missile.mdl in SIMULINK. Open the controller 
subsystem and implement a PID controller. See Lesson 9 if you need help remembering 
how a PID controller is implemented in SIMULINK. 

Set or check the following model parameters prior to running the simulation: 

• The commanded position is specified using a ramp function. Ensure the slope of 
the ramp is the average speed calculated in question 1a. 

• In the configuration parameters window (Ctrl-E) set the stop time of the 
simulation to 2 and the “Relative Tolerance” to 1e-6. 

• In the PID controller set the gains as follows: KP=100, KD=0, and KI=0.1 

                                                 
1 By setting the KD and KI gains to 0, the PID controller becomes a simple proportional controller. 
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2a) Run the simulation and sketch the plots of “CM speed”, “Distance Error”, and 
“Distance” on the axes below. Label the maximum, minimum, and final values on the 
“CM Speed” and “Distance Error” plots. 
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2b) After launch, what is the cruise missile’s minimum and maximum speed? 
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Min Speed [kph]: Max Speed [kph]: 

 

2c) The speeds predicted in 2b are a problem. Why? Hint: See Table 1. 

 

Limiting the Cruise Missile Speed 
To limit the cruise missile’s speed to a range of realistic values insert a “Saturation” 
block in the SIMULINK model between the cruise missile’s transfer function and the 
integrator. Set the upper and lower limits of the saturation block to the cruise missile’s 
minimum and maximum speeds specified in Table 1. 

Saturation Position vs Time

1
s

Integrator

1

s+1
Cruise Missile

Transfer Function

Error Signal Control Signal

ControllerCommanded
Position

 
Figure 3: The SIMULINK model with a saturation block to limit the cruise missile’s speed. Many of the 

plotting and display elements in the model have been omitted for clarity. 

2d) Run the simulation again and sketch the Cruise Missile Speed plot on the axes below. 
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400

2e) The maximum cruise missile speeds predicted by the model without the saturation 
block (question 2b) is greater than the upper limit for the saturation block. Looking at the 
cruise missile speed plot in question 2d you can clearly see the saturation block limiting 
the lower speed of the missile. However, the missile speed never gets fast enough to be 
limited by the saturation block’s upper limit. Why? 
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Adjusting the Transient Response 
3a) Which gain in the PID controller adjusts the system’s transient response and only the 
system’s transient response? 

  

3b) What gain value will make the response critically damped? Increase the gain (from 
question 3a) until there is no overshoot in the cruise missile’s speed plot. Record this 
value to the nearest 10. 

 

3c) Record the controller’s gain values and the distance error at 1 and 2 hours of flight. 
Sketch a plot of the distance error for these gain values. 

KP: KD: KI: 
Distance Error 
at 1 hour [km] 

Distance Error 
at 2 hours [km] 
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Adjusting the Steady State Response 
4a) Which gain term will adjust the system’s steady state value and only the system’s 
steady state value? 

  

4b) Find the minimum value for this gain which minimizes the cruise missile’s distance 
error at 2 hrs. Record the gain value and the distance errors at 1 and 2 hours of flight. 
Sketch a plot of the distance error for these gain values. 

KP: KD: KI: 
Distance Error 
at 1 hour [km] 

Distance Error 
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D
is

ta
nc

e 
E

rro
r [

km
]

Distance Error vs.  Time

2.01.51.00.50.0

Time [hrs]
0

 
4c) Now try to also reduce the cruise missile’s distance error at 1 hour into flight. What 
happens to the distance error at 2 hours?  Why? 
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Final Controller Tuning 
5a) Now adjust all three gains so the cruise missile’s distance error is less than 1 km for 
most of the flight. Additionally, all gain values should be less than 1000. Record your 
gain values below. 

KP: KD: KI: 
Distance Error 
at 1 hour [km] 

Distance Error 
at 2 hours [km] 

5b) Sketch a plot of the distance error for these gain values. 
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5c) The plot below illustrates cruise missiles distance error over its flight. Illustrate how 
increasing each of the three gains (KP, KD, and KI) change the shape of this plot. 
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Part II: Discrete Sampling 
This section of the lesson will explore the differences between continuous and discrete 
sampling. In continuous sampling the feedback signal to the controller is always 
available and up to date at any and all instances of time. In discrete sampling the 
feedback signal to the controller is only updated periodically. 

6a) Consider this simple example. When you are walking with your eyes open, you are 
receiving continuous feedback about your position with respect to objects around you. 
Now try walking around the room with your eyes closed, only open them once per 
second. How easy is it to walk quickly and avoid obstacles? How easy is it to run? Now 
try walking around the room again, this time only peek every 10 seconds. With your eyes 
closed longer, does this make it easier to move fast and avoid obstacles? Why or why 
not? 

 

 

 

When you are walking with your eyes open your brain is a feedback system with 
continuous sampling. When walking with your eyes shut and only peeking occasionally, 
your brain is a feedback system with discrete sampling. 

Discrete Sampling and the Cruise Missile 
The controller in the cruise missile needs a measurement of the missile’s current position 
to accurately fly the mission profile. A simple method of providing this position feedback 
is with a GPS receiver. However, most GPS receivers only provide position updates 
periodically (i.e. not continuously). This can be especially true in inclement weather or if 
obstacles are between the receiver and one or more of the satellites. 

6b) How will the cruise missile’s performance change as the amount of time between 
position updates increases? 
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Discrete Sampling in SIMULINK. 
Discrete sampling can be modeled in SIMULINK using the Zero-Order Hold block.2 The 
Zero-Order Hold block measures its input periodically. Its output, until the next sample 
time, is the value of the previously measured input. 

Figure 4 shows the model (a) and results (b) of a ramp signal processed by a Zero-Order 
Hold block with a sampling period of 1. 

MuxZero-Order
Hold

Scope
Ramp

0 2 4 6 8 10
0

1
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7

8

9

10

 

 
Ramp Input
Ramp After 1 Sec Zero-Order Hold

(a) (b)  
Figure 4: A Zero-Order Hold block processing a ramp signal (a) and the plot of the results (b). 

Adding Discrete Sampling to the Cruise Missile’s Position Measurement 
7a) Set the controller’s gains to KP=100, KI=100, and KD=70. Run the simulation 
(without a Zero-Order Hold block in the model) to establish a baseline for performance. 
Record the Maximum distance error, and the distance errors at 1 and 2 hours of flight. 
Sketch a plot of the distance error for these gain values. 
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2 The Zero-Order Hold block is located in the “Discrete functions” section of the SIMULINK Library. 
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Add a Zero-Order Hold block to the feedback loop of the cruise missile model as 
depicted in Figure 5. Double click on the block and set the sample time to 1/60. This sets 
the sample period to once per minute because the simulation time scale is in hours. You 
will need to flip the block around to make it fit into the model. 

Mux

Zero-Order
Hold

SaturationRamp
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s

Integrator
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Final Distance Error (km)
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Distance Errror (km)

Error Signal Control Signal

Controller

CM Speed

1

s+1
CM

 
Figure 5: The cruise missile model with a Zero-Order Hold block providing discrete sampling of the 

missile’s position down track. Model elements in gray provide display functions only and do not affect the 
model’s dynamics. 

7b) Run the simulation. Record the maximum distance error and the distance errors at 1 
and 2 hours of flight. Sketch a plot of the distance error for these gain values and 
sampling period. 
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7c) What happened?!!? 
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7d) Zoom in on the a section of the Distance Error plot to see its shape clearly. Label this 
plot with your name and print it for your notes. Describe the line plotted. 

 

 

 

7e) In the example of someone walking with their eyes shut and only peeking 
occasionally, how does one improve the system’s response? 

 

 

7f) Increase the sampling rate of the Zero-Order Hold block to once per second (1/3600 
hrs), and rerun the simulation. Record the maximum distance error and the distance errors 
at 1 and 2 hours of flight. Sketch the distance error plot on the axes below. 
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7g) How much did increasing the sampling time improve the system’s response? 
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The “Other” Discrete Sampling Problem 
Question 7 illustrates that even with the GPS providing an updated position to the cruise 
missile for each second of a two hour flight (7,200 position updates), the missile’s 
performance will still be much worse than if its position has been updated continuously. 

This is because sampling rate is not the only concern when it comes to discrete control 
systems. Question 8 explores this “other” problem with discrete sampling. 

8a) What is the derivative of a continuously sampled ramp signal? 

 

8b) Plot the derivative of the step function on the axes below. 

Time

Time

)(tu

)(tu
dt
d

 
8c) Check your answer with SIMULINK. Open a new model window and build the 
model depicted in Figure 6. Use the default values for the step function (Step Time = 1, 
Initial Value = 0, Final Value = 1). 

Step Scope

du/dt

Derivative

 
Figure 6: A SIMULINK mode to determine the derivative of a step function. 

Record the maximum value for the derivative. The autoscale button  on the plot is 
helpful in determining this value. 

The Derivative of a Step 
Function’s Maximum Value 
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Now build the SIMULINK model depicted in Figure 7 to find the derivative of a 
discretely sampled ramp signal. Use a Mux block to plot three signals on the same plot. 
Double click on the Mux block to add another input port. 

MuxZero-Order
Hold

Scope

Ramp

du/dt

Derivative

Sampled RampRamp d/dt of  Sampled Ramp

 
Figure 7: A SIMULINK model to find the derivative of a discretely sampled ramp signal. 

8d) Sketch the derivative of a discretely sampled ramp signal? 
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8e) Which part of the cruise missile’s controller is causing the missile’s performance to 
suffer because of the discrete position sampling? 

 

 

 

8f) List two methods of fixing the controller to improve its performance for a discretely 
sampled feedback signal. Using a continuous feedback signal is not an option! 
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9a) Set the controller’s gains to KP=100, KI=100, and KD=10. Set the sampling period of 
the Zero-Order Hold block to once per minute (1/60 hrs). Run the simulation again. 
Record the maximum distance error and the distance errors at 1 and 2 hours of flight. 
Sketch the distance error plot for these gain values and sampling period. 
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9b) Remove the controller’s derivative term completely (set KD = 0). Run the simulation 
again. Record the maximum distance error and the distance errors at 1 and 2 hours of 
flight. Sketch the distance error plot for these gain values. 
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9c) How much did lowing KD to 10 improve the response? Lowing KD to 0? 
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Removing the derivative term of the controller is one way of improving the response of a 
system with discrete feedback. However, this causes the controller to be much less 
effective at controlling the transient response of the system. 

We would like to leave the derivative term in the controller to control the transient 
response of the system. The discontinuities from sampling every minute cause the 
derivative term in the controller to give erroneous control signals. The magnitude of these 
erroneous control signals are very large and dwarf the actual control signals. 

“Smoothing out” the position feedback signal will remove the discontinuities causing the 
problems. A first order transfer function can smooth out the feedback signal. This 
filtering transfer function should have a DC gain of 1 and be of the form 

α
α
+

=
s

G . 

Where α is selected to smooth out the feedback signal. Insert a first order transfer 
function into the cruise missile’s SIMULINK model. Add another Scope block and a 
Mux block to plot the feedback signals entering and exiting the filtering transfer function. 
Figure 8 depicts the model with these elements added to it. 
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Figure 8: The cruise missile SIMULINK model with a 1st order transfer function to smooth the 

discretely sampled position feedback signal. The Mux and Scope blocks display the input to and 
output from the “Position Filter” block. 
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10a) Set the sample time of the Zero-Order Hold block to once per minute (1/60 
hrs). In Figure 8, α = 2. This value of α does not allow the filter’s output to accurately 
track its input. Run the simulation and adjust α so the position filter’s output closely 
tracts its input while at the same time smoothing its output. Record your value of α 
below. 

α 

Set all the controller gains to 100. Set the sample time of the Zero-Order Hold block 
to once per minute (1/60 hrs). 
10b) Run the simulation again and print the “Cruise Missile Speed” and “Distance 
Error” plots for your notes. Label the plots with the gain values and sampling period. 
How is the cruise missile’s speed changing over the duration of the flight? 

 

 

 

 

10c) Now set the sample time of the Zero-Order Hold block to once per second (1/3600 
hrs). Run the simulation again and print the “Cruise Missile Speed” and “Distance 
Error” plots for your notes. Label the plots with the gain values and sampling period. 
How is the cruise missile’s speed changing over the duration of the flight? 

 

 

 

10d) Has the faster sampling rate improved the cruise missile’s response? 

 

 

 

 

10e) In this question, adjusting the sampling rate does affect the cruise missile’s 
response. In question 7, adjusting the sampling rate had little affect on the cruise missile’s 
response. Explain this difference in system behavior? 

 



 ES360 Introduction to Controls Engineering 

 Lesson 11: Hardware Implementation of PID Speed Control 

 Page 1 of 8 

Hardware Implementation of PID Speed Control 
This lesson continues the exploration of PID controllers. Figure 1 shows the cart that will 
be used for this lab. A digital PID controller is used to regulate the cart’s speed. 

 
Figure 1: The PID controlled cart. 

Cart Overview 
The INPUT adjustment sets the desired speed for the cart. The Kp, Ki, and Kd 
adjustments set the controller’s proportional, integral, and derivative gains. The program 
mode switch determines which of the two possible program modes (green or red) the cart 
will operate in. The start button sets the cart in motion and resets the cart at the end of a 
run. 

G

G

G

G

Y

R

R

R

R X
B

ee

KdKp Ki INPUT

Start Button

LED Bar Graph

Program Mode Switch

Green

Red

PID Gains
Speed Set Point Adjustment

Power Switch

 
Figure 2: The cart’s controls. 

The primary function of the LED bar graph is to display the sign and magnitude of the 
error signal when the cart is in motion. The yellow LED indicates the error is zero (the 
cart is traveling at the desired speed).  Red LEDs indicate the cart is traveling slower than 
the desired speed. Green LEDs indicate the cart is traveling faster than the desired speed. 
The farther from the yellow LED, the greater the magnitude of the error. 
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Additionally, the LED bar graph has three secondary functions: 

• It confirms which mode the cart is in by blinking either the green or the red LEDs. 

• When the speed set point is adjusted with the INPUT potentiometer, the bar graph 
indicates the specified speed. The yellow LED corresponds to a desired speed set 
point of 0.5 m/s. Red LEDs indicate a slower set point and green LEDs indicates a 
faster set point. 

• When the start button is pressed, the bar graph counts down until the cart starts 
moving. 

The cart’s speed is measured using an encoder on the motor shaft. 

Shaft EncoderMotor

Drive Train

 
Figure 3: The underside of the cart showing the drive train, motor, and encoder. 

Cart Operation 
1. Set the program mode switch to the desired mode (green or red). 

2. Turn the cart on. The LEDs will blink indicating the selected mode. 

3. Set the desired cart speed with the INPUT adjustment. The LEDs will indicate 
desired speed. The yellow LED indicates a desired cart speed of 0.5 meters per 
second. Red is slower and green is faster. 

4. Adjust the PID gains (Kp, Ki, and Kd) as desired. 

Clockwise (CW) is the maximum gain value. 
Counter clockwise (CCW) is a gain of zero. 

5. Press the start button. The LEDs will count down and the cart will start moving. 

6. At the end of the run the cart will stop and the yellow LED will blink. 

7. Press the start button. The program mode will be displayed and then the speed 
set point and PID gains may be adjusted in preparation for the next run. 

Before we turn the cart loose in the hallway, let’s become familiar with the response of 
its PID controller. 
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Proportional Gain Effects 
1a) Configure the controller as specified in the table below. Hold the cart in your hand 
and press the start button to run the cart. Which LEDs are lit? Does the steady state error 
indicate faster or slower than the desired speed? 

G G G G Y R R R R

Steady State Response  

 
Program Green 

Kp Full CCW (zero) 
Ki Full CCW(zero) 
Kd Full CCW (zero) 

INPUT Yellow LED only 
 

 

1b) Increase the proportional gain by slightly turning the potentiometer clockwise and 
run the cart again. Which LEDs are lit? What has happened to the steady state error? 
While the cart is running in your hand, you can vary the proportional gain to see the 
effect on steady state error. 

 

 

 

 

1c) Maximizing the proportional gain can minimize steady state error at the expense of 
the transient response. Configure the controller as specified in the table below. Hold the 
cart in your hand and run it. Describe the transient response indicated by the LEDs. What 
is the steady state error? 

G G G G Y R R R R

Transient Response

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

Steady State Response  

 
Program Green 

Kp Full CW (maximum) 
Ki Full CCW (zero) 
Kd Full CCW (zero) 

INPUT Yellow LED only 
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Integral Gain Effects 
Recall that the integral term affects the steady state response. 

2a) Establish a baseline response by configuring the cart as specified in the table below. 
Hold the cart in your hand while running it. Note the steady state error. This is the 
response with NO integral term (Ki = 0). 

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Mid-Position 
Ki Full CCW (zero) 
Kd Full CCW (zero) 

INPUT Yellow LED only  
 

 

 

 

2b) Now very slightly increase the integral gain (turn Ki clockwise). What is the steady 
state error? How long does it take the controller to reach the steady state condition? 

G G G G Y R R R R

Steady State Response  
 

2c) Increase the integral gain some more. Do not maximize the integral gain (fully 
clockwise). How does the system’s response change? Repeat this several times varying 
the amount of integral gain. 

G G G G Y R R R R

Steady State Response  
 

 

 2d) Now lets examine what happens when the integral gain becomes too large. 
Configure the cart as specified in the table below, and hold it in your hand while running 
it. What is the steady state error? What happens to the transient response? Why? 

G G G G Y R R R R

Transient Response

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Full CCW(zero) 
Ki Full CW (Maximum) 
Kd Full CCW (zero) 

INPUT Yellow LED only  
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Derivative Gain Effects 
Recall that the derivative gain affects only the transient response. 

3a) Configure the cart to produce an under damped response by maximizing the 
proportional gain and setting the derivative and integral gains to zero specified in the 
table below. Hold it in your hand while running it. What is the largest oscillation of the 
error signal? What is the steady state error? 

G G G G Y R R R R

Transient Response

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Full CW (Maximum) 
Ki Full CCW (zero) 
Kd Full CCW (zero) 

INPUT Yellow LED only  

 

 

 

3b) Increase the derivative gain and run the cart again. Describe the transient response. 

G G G G Y R R R R

Transient Response

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R
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Discrete Sampling Problems 
4a) In Lesson 10 we explored the “other” problem with discrete sampling. What was this 
“other” problem? 

 

 

4b) This controller samples the shaft encoder at 50Hz to calculate the cart’s speed error. 
In the green program mode, a filter is applied to the error signal to smooth it out. In the 
red program mode, no filtering is applied to the error signal. Predict how the cart will 
respond in the red program mode. 

 

 

4c) Test your prediction by running the cart with no filtering applied to the error signal 
(red program mode). Configure the cart as described in the table below. Describe the 
transient response. 

G G G G Y R R R R

Transient Response

G G G G Y R R R R

G G G G Y R R R R

G G G G Y R R R R

 

 
Program Red 

Kp Full CW (Maximum) 
Ki Full CCW (Zero) 
Kd Full CW (Maximum) 

INPUT Yellow LED only 

 

4d) Run the cart again. This time, change the program mode back and forth during the 
run. How does the response change? 

 

 

 

4e) Vary the proportional and derivative gains while running the cart in the red program 
mode. Which values of these gains make the response worse? 
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Running the Cart 
5a) Configure the cart as follows and run it up the big ramp. Note the steady state error. 

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Mid-Position 
Ki Full CCW (zero) 
Kd Full CCW (zero) 

INPUT Yellow LED only  
 

5b) If Kp is increased what will happen to the steady state error? Will it be eliminated? 

 

5c) Maximize Kp and run the cart up the big ramp. Note the steady state error? 

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Full CW (maximum) 
Ki Full CCW (zero) 
Kd Full CCW (zero) 

INPUT Yellow LED only  
 

5d) What will happen to the steady state error if a very slight amount of integral gain is 
used? 

 

 

5e) Apply a very slight amount of integral gain and run the cart up the big ramp. Note 
the steady state error? 

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Full CW (maximum) 
Ki Almost Full CCW (but not quite) 
Kd Full CCW (zero) 

INPUT Yellow LED only  
 

5f) Now run the cart down the big ramp and note the steady state error. 

G G G G Y R R R R

Steady State Response  

Program Green 
Kp Full CW (maximum) 
Ki Almost Full CCW (but not quite) 
Kd Full CCW (zero) 

INPUT Yellow LED only  
 

5g) Adjust the gains to remove the steady state error going down the big ramp. 
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5h) Were you able to remove the steady state error in question 5e? Why or why not? 

 

 

5i) Add more friction to the cart by dragging a mass behind the cart as it runs down the 
ramp. Can you remove the steady state error now? Why or why not? 

 

 

 

 

The cart is programmed to run a little over 5 meters. The goal is to have the cart run the 5 
meter course in exactly 10 seconds. There are two 5 meter courses, one carpeted and one 
not carpeted. Run the cart several times on each. Adjust the gains to get the cart to run the 
course in exactly 10 seconds. You may use different gain settings for each course. 

The cart should be run in the green program with the desired speed set to 0.5 meters per 
second (the yellow LED). 

5j) Record your attempts in the table below.  
Course Speed Kp Ki Kd Time Comments 

       

       

       

       

       

       

       

       

       

       

       

       

 

5k) For which course was it easier to have the cart meet the goal time? Why? 
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