Stiffness and Bending

Home \mid Problem Sets \& Sample Soln's \mid Kit List \mid ProEngineer Stuff \mid Handouts \mid Lec Notes

Introduction

One very common problem that students have in 2.007 is not making their arm or structures stiff enough. This is a problem because the arms and structures usually need to move or support things. A lack of stiffness is very common cause of machine unreliability.

Remember from 2.001 that the following factors need to be known to calculate the stiffness of something.

The Young's Modulus [E]:

This is a material property that measures the stress/strain.
The Cross-Sectional Inertia [I]:
This is determined by the cross sectional geometry of the arm.
The Loading Configuration:
This gives your equation to calculate the the deflection. Typical configurations and their equations are listed below.

Young's Modulus

Material	Young Modulus E		Shear Modulus G		Poisson's Ratio v
	ksi	GPa	ksi	GPa	
Aluminum (pure)	10,000	70	3,800	26	0.33
Aluminum alloys					
6061-T6	10,000	70	3,800	26	0.33
7075-T6	10,400	72	3,900	27	0.33
Steel	29,000	190-210	11,300	75-80	0.27-0.30
Delrin	3.1		0.35		

Moments of Inertia

Return to Top of Page
Cross Section
Inertia

$$
I_{x}=\frac{b_{o} \cdot h_{o}^{3}-b_{i} \cdot h_{i}^{3}}{12}
$$

$$
\begin{gathered}
I_{x}=\frac{b \cdot h^{3}}{12} \\
I_{x}=\frac{\pi \cdot\left(d_{o}^{4}-d_{i}^{4}\right)}{64} \\
I_{x}=\frac{\pi \cdot d^{4}}{64} \\
I_{x}=2 A\left(\frac{h}{2}\right)^{2}
\end{gathered}
$$

This is an approximation of a simple truss, ingoring the cross members. Both upper and lower members have the same area (A).

$\mathrm{v}=$ deflection in y direction
$\mathrm{v}^{\prime}=\mathrm{dv} / \mathrm{dx}=$ slope of deflection curve
$\mathrm{db}=\mathrm{v}(\mathrm{L})=$ deflection at right end of beam
$E I=$ constant
Theta $b=v^{\prime}(L)=$ angle at right end of beam

$$
\begin{array}{rlr}
0<\mathrm{X}<\mathrm{A} & \mathrm{~A}<\mathrm{x}<\mathrm{L} & \\
v=\frac{P x^{2}}{6 E I}(3 a-x) & v=\frac{P a^{2}}{6 E I}(3 x-a) & \delta_{b}=\frac{P a^{2}}{6 E I}(3 L-a) \\
v^{\prime}=\frac{P x}{2 E I}(2 a-x) & v^{\prime}=\frac{P a^{2}}{2 E I} & \theta_{b}=\frac{P a^{2}}{2 E I}
\end{array}
$$

$\begin{aligned} v & =\frac{M_{\theta} x^{2}}{2 E I} \\ v^{\prime} & =\frac{M_{o} x}{E I}\end{aligned}$
$v=\frac{M_{o} a}{2 E I}(2 x-a)$
$\delta_{b}=\frac{M_{o} a}{2 E I}(2 L-a)$
$v^{\prime}=\frac{M_{o} a}{E I}$
$\theta_{b}=\frac{M_{o} a}{E I}$

Tools for Evaluating Deflection

\square	bendingxas				凹目
	A	B	c	D	－
1	Simple and Cantilevered Beam Calculations				三
2	By：Roger Cortesi				
3	Late Modified on 4 FEB 98				
4	Modify Numbers in Bold Only				
5	To mach variable names see bending handout				
6					
7	Material Properties				
8	Young＇s Modulus of Material，E［GPa］：	200	E［Pa］：	$2 \mathrm{E}+11$	
9					
10	Cross Section Configurations				
11	Rectagular				
12	Ho［mm］：	4	Ho［m］：	0.004	
13	Hi［mm］：	0	$\mathrm{Hi}[\mathrm{m}]$ ：	0.000	
14	bo［mm］：	4	bo［m］：	0.004	
15	bi［mm］：	0	bi［m］：	0.000	
16	1x［m＊4］：	$2.13 \mathrm{E}-11$			
17					
18	Circular				
19	Do［mm］：	4	Do［m］：	0.004	
20	Di［mm］：	0	Di［m］：	0.000	
21	1x［m＊4］：	1．26E－11			
22					
23	Bending Configurations				
24	Length，L［mm］：	100	L［m］：	0.100	
25	Applied Load，P［H］：	400	P ［1bs］：	89.9	
26	Load Distance，A［mm］：	75	A［m］：	0.075	
27	Cross Sectional Inertia，I［m²4］：	2．13E－11			
28	Point of Interest，X［mm］：	75	X［m］：	0.075	
29					
30	Cantilevered Beam				
31	Deflection at $X, v[m]$ ：	0.013	v ［mm］：	13.2	
32					
33	Simply Supported Beam				
34	$\mathrm{b}=(\mathrm{L}-\mathrm{a})[\mathrm{m}]$ ：	0.025			
35	（L－x）$[\mathrm{m}]$ ：	0.025			
36	Deflection at $X, v[\mathrm{~m}]$ ：	0.001	v ［mm］：	1.1	
37					－
141	－Sheet1／Sheet2＜Sheet3／	1 ｜IIII			\cdots

recinert．m and cirinert．m calculate the cross sectional inertia for rectangular and circular cross sections respectively．all units must be consistent．

RECINERT（A，B，C，D）and CIRINERT（A，B）

```
a rectangular cross section
A = outer width, B = outer height
C = inner width, and D = inner height
To evalute a filled rectangle set C and D = 0
>help cirinert
CIRINERT(A,B) calculates the cross sectional moment of interia for
a pipe cross section
A = outer diameter, B = inner diameter
To evalutate a filled circle set B = 0
```

cantbeam.m shows the deflection of a cantilevered beam loaded from 1 or more points.

CANTBEAM(P,a,L,E,I,incr)

»help cantbeam

```
    [def] = CANTBEAM(P,a,L,E,I,incr) returns arrays with
    the deflection [def]. [def] is also plotted.
            P is the force applied to the beam in NEWTONS
            a is the distance from the left end that the force is applied in METERS
            L is the length of the beam in METERS
            E is the young's modulus of the material in Pa
            I is the cross sectional inertia in METER^4
            icnr is the number of increments to sample along the beam
Multiple forces can be entered in P, however, a must be the same length
to give a position for each force. P can be positive or negative.
all values of a may not be greater then L
E, I, a, incr, and L must be greater then 0
def is in meters (plotted in mm)
```

Below is a sample plot from cantbeam.m for the following data:

```
L = 0.10 m
I = 2.1333e-11 m^4 (4mm by 4mm shaft)
E = 200E+9 Pa (steel)
incr = 100
P = [-400 600 -200] N
a = [0.03 0.06 0.09] m
```


On the deflection plot the red lines are at the point of force application and they are "pushing" the beam (e.i. a positive force will have its red line below the beam "pushing" up). The values of each force is displayed at the end of its force line.

The deflection is plotted in $\mathbf{m m}$ but the array returned for [def] is in meters!

simpbeam.m

shows the deflection of a simple beam supported
at either
end, loaded from 1 or more points.
SIMPBEAM(P,a,L,E,I,incr)
»help simpbeam
[def] $=\operatorname{SIMPBEAM}(P, a, L, E, I, i n c r)$ returns an array with
the deflection [def]. [def] is also plotted.

```
Multiple forces can be entered in P, however, a must be the same length
to give a position for each force. P can be positive or negative.
all values of a may not be greater then L
E, I, a, incr, and L must be greater then 0
def arrary is in meters (plotted in mm)
```

Below is a sample plot from simpbeam.m for the following data:

```
L = 0.10 m
I = 2.1333e-11 m^4 (4mm by 4mm shaft)
E = 200E+9 Pa (steel)
incr = 100
P = [-100 100 -100] N
a = [0.02 0.05 0.08] m
```


On the deflection plot the red lines are at the point of force application and they are "pushing" the beam (e.i. a positive force will have its red line below the beam "pushing" up). The values of each force is displayed at the end of its force line.

The plot may look like the beam is bending a lot, but compare at the scale on the \mathbf{x} and \mathbf{y} axis. In this example the maximum deflection is $\mathbf{0 . 0 7 5} \mathbf{~ m m}$ for a 10 cm long beam!

Return to Top of Page

This site is maintained by rcortesi@mit.edu; Send questions, comments, and suggestions to him.

All contents copyright © 1997 MIT
Roger Cortesi
All rights reserved

